• Title/Summary/Keyword: Load-pull

Search Result 271, Processing Time 0.029 seconds

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

Effect of Si contents on Tensile-Shear Peak Load and Nugget Diameter in the Resistance Spot Welded of Dual Phase Steel for Automotive Body Applications (자동차 차체용 냉연 DP강 저항점용접부의 너깃경과 인장전단강도에 미치는 Si 함유량의 영향)

  • Kong, Jong-Pan;Park, Tae-Jun;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.45-45
    • /
    • 2009
  • 원가 측면에서 유리한 저항점용접(Resistance Spot Welding)이 차체 용접에 80%이상으로 가장 많이 적용되고 있다. 첨단고강도강(Advanced High Strength Steel)의 저항점용접성 및 용접부 특성에 미치는 공정 변수의 영향에 대한 연구결과는 많으나, 합금원소의 영향에 대해서는 전무하다. 특히, Si는 DP(Dual Phase)강에 첨가 시 균일한 마르텐사이트의 분포를 촉진하는 원소로 저항 점용접성 및 용접부 특성에 영향을 미칠 것으로 예상되며, 이에 대한 연구는 보고된바 없다. 본 연구에서는 냉연 DP강의 저항 점용접시 중요한 인자 중 하나인 너깃경과 전단인장강도에 미치는 Si함유량의 영향을 검토하였다. 사용된 강재 및 용접기는 1.2mm 두께의 Si함유량(0, 0.5, 1.0, 1.5wt%)이 다른 인장강도 780~1000MPa급 냉연 DP강과 단상 AC용접기를 사용하였다. 용접조건은 ISO 18278-2규격에 따라 가압력 4kA, 초기가압시간 40cycle, 유지시간 17cycle로 고정하고, 용접전류만 변화하여 용접을 실시하였다. 너깃경은 용접부 단면을 컷팅 후 폴리싱 하여, 광학현미경과 Image Pro plus를 이용하여 측정했으며, 인장시편규격은 JIS Z 3137를 이용하였다. Si함유량이 증가에 따라 스패터 발생 전류는 감소했고, 너깃경은 직선적으로 증가했다. Si함유량 증가에 따른 너깃경 증가 이유는 저항(R) 측정결과, Si함유량 증가에 따라 모재의 저항이 높아져, 따라서 입열량($Q=I^2Rt$)이 많아지기 때문으로 판단되었다. 인정전단강도는 Si함유량 증가에 따라 직선적으로 증가했다. 이러한 이유는 Si함유량 증가에 따라 너깃경이 증가되기 때문으로 판단되었고, 너깃경과 인장전단강도 사이에 직선적 관계(PL(kN)=$3.2N_{dia.}$-0.81, $R^2$=0.93)를 가지고 있었다. 파단양상은 Si함유량에 상관없이 5.4kA이하에서는 계면파단이 일어났고, 6.0kA이상에서는 풀 아웃 파단이 일어났다. 계면파단주원인은 용접부 가장자리에 지름이 약 $5{\mu}m$이하의 예리한 노치가 존재하여 노치응력집중과 HAZ계면 근처에 미접합부가 존재하기 때문으로 판단되었다. 6.0kA이상에서는 예리한 노치가 없었고, HAZ부가 완전히 접합되어 있기 때문에 풀 아웃 파단이 일어난 것으로 판단되었다. 따라서, Si함유량 증가에 따라 적정용접전류 구간은 감소했고, 너깃경은 직선적으로 증가했다. 또한, Si함유량 증가에 따라 인장전간강도는 증가 했으며, 너깃경과 인장전단강도 사이에 직선적 관계를 가지고 있었다. 파단 양상은 Si함유량에 상관없이 5.2kA이하에서는 계면파단이, 6.0kA이상에서는 풀 아웃 파단이 일어났다.

  • PDF

Differences in the Joint Movements and Muscle Activities of Novice according to Cycle Pedal Type

  • Seo, Jeong-Woo;Kim, Dae-Hyeok;Yang, Seung-Tae;Kang, Dong-Won;Choi, Jin-Seung;Kim, Jin-Hyun;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.237-242
    • /
    • 2016
  • Objective: The purpose of this study was to compare the joint movements and muscle activities of novices according to pedal type (flat, clip, and cleat pedal). Method: Nine novice male subjects (age: $24.4{\pm}1.9years$, height: $1.77{\pm}0.05m$, weight: $72.4{\pm}7.6kg$, shoe size: $267.20{\pm}7.50mm$) participated in 3-minute, 60-rpm cycle pedaling tests with the same load and cadence. Each of the subject's saddle height was determined by the $155^{\circ}$ knee flexion angle when the pedal crank was at the 6 o'clock position ($25^{\circ}$ knee angle method). The muscle activities of the vastus lateralis, tibialis anterior, biceps femoris, and gastrocnemius medialis were compared by using electromyography during 4 pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, and phase 4: $210{\sim}330^{\circ}$). Results: The knee joint movement (range of motion) and maximum dorsiflexion angle of the ankle joint with the flat pedal were larger than those of the clip and cleat pedals. The maximum plantarflexion timing with the flat and clip pedals was faster than that of the flat pedal. Electromyography revealed that the vastus lateralis muscle activity with the flat pedal was greater than that with the clip and cleat pedals. Conclusion: With the clip and cleat pedals, the joint movements were limited but the muscle activities were more effective than that with the flat pedal. The novice cannot benefit from the clip and cleat pedals regardless of their pull-up pedaling advantage. Therefore, the novice should perform the skilled pulling-up pedaling exercise in order to benefit from the clip and cleat pedals in terms of pedaling performance.

Design of eFuse OTP Memory with Wide Operating Voltage Range for PMICs (PMIC용 넓은 동작전압 영역을 갖는 eFuse OTP 설계)

  • Jeong, Woo-Young;Hao, Wen-Chao;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • In this paper, reliability is secured by sensing a post-program resistance of several tens of kilo ohms and restricting a read current flowing over an unblown eFuse within $100{\mu}A$ since RWL driver and BL pull-up load circuits using a regulated voltage of V2V ($=2V{\pm}10%$) are proposed to have a wide operating voltage range for eFuse OTP memory. Also, when a comparison of a cell array of 1 row ${\times}$ 32 columns with that of 4 rows ${\times}$ 8 columns is done, the layout size of 4 rows ${\times}$ 8 columns is smaller with $187.065{\mu}m{\times}94.525{\mu}m$ ($=0.01768mm^2$) than that of 1 row ${\times}$ 32 columns with $735.96{\mu}m{\times}61.605{\mu}m$ ($=0.04534mm^2$).

The Design of the Class E Swiching Frequency Multiplier (스위칭 모드 E급 주파수 체배기 설계)

  • Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.90-99
    • /
    • 2009
  • In this paper, we proposed the new class-E frequency multiplier design that include the highest efficient characteristics. The proposed frequency multiplier is designed for 5.8[GHz] output using the frequency multiplier about 2.9[GHz] input signal. And studying in this paper is for the design and the implementation of the class E frequency multiplier. For the result, the maximum highest efficient characteristics 32[%] which is with output power 24.5[dBm] and 8.5[dB], is shown with frequency multiplier for the 2.9/5.8[GHz] class E. And we applied the linear method to the implemented class E frequency multiplier. As a result, the output spectrum for the linear is upgrade to 12[dB], 12[dB], 13[dB] of the ACPR characteristics on the +11[MHz], +20[MHz], +30[MHz] offset frequency in the center frequency. The result is satisfied with the 3.83[%] of the lineared EVM for the 64-QAM modulated method with the 54[Mbps] transmission velocity. In this paper, we show that the good compensation result of the linearity and the efficiency through the digital pre-linear method of the distortion with the frequency multiplier. Therefore, we suggested the frequency multiplier method are applying to WLAN, cellular, PCS, WCDMA, and etc.

Friction of calcium phosphate brackets to stainless steel wire (인산칼슘재 브라켓과 강선사이의 마찰저항에 관한 연구)

  • Joo, Hyo-Jin;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.37 no.5
    • /
    • pp.376-385
    • /
    • 2007
  • Esthetic brackets which resemble the color of natural teeth have been widely used. But the frictional resistance of ceramic brackets, a typical esthetic bracket, is greater than that of metal brackets. The purpose of this study was to measure the frictional resistance of the new calcium phosphate brackets (CPB) which were recently developed and to evaluate its clinical usability by comparing the frictional differences of CPB with metal brackets and metal slot inserted ceramic brackets. Methods: Experimental groups were CPB (Hyaline II, Tomy, Tokyo, Japan), metal bracket (Kosaka, Tomy, Tokyo, Japan) and metal slot inserted ceramic bracket (Clarity, 3M Unitek, Monrovia, CA, USA). All of the brackets had 0.022-inch slot sizes. The brackets were tested with $0.019\;{\times}\;0.025$ inch stainless steel wire (3M Unitek, Monrovia, CA, USA). A biologic model was used to simulate the situation which would occur during orthodontic treatment with fixed appliances. Retraction force was applied at a speed of 5 mm/min for 30 seconds. The frictional resistance was measured on a universal testing machine (Instron 4467, Instron, Norwood, MA, USA). Results: CPB showed significantly higher friction than metal brackets (p < 0.05) and lower friction than metal slot inserted ceramic brackets (p < 0.01). Conclusions: CPB can be considered to be a useful orthodontic esthetic bracket with respect to frictional resistance, as its friction is remarkably lower than that of metal slot inserted ceramic brackets.

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

A Study on the Design of Amplifier for Source Driver IC applicable to the large TFT-LCD TV (대형 TFT-LCD TV에 적용 가능한 Source Driver IC 감마보정전압 구동용 앰프설계에 관한 연구)

  • Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.51-57
    • /
    • 2010
  • A CMOS rail-to-rail high voltage buffer amplifier is proposed to drive the gamma correction reference voltage of large TFT LCD panels. It is operating by a single supply and only shows current consumption of 0.5mA at 18V power supply voltage. The circuit is designed to drive the gamma correction voltage of 8-bit or 10-bit high resolution TFT LCD panels. The buffer has high slew rate, 0.5mA static current and 1k$\Omega$ resistive and capacitive load driving capability. Also, it offers wide supply range, offset voltages below 50mV at 5mA constant output current, and below 2.5mV input referred offset voltage. To achieve wide-swing input and output dynamic range, current mirrored n-channel differential amplifier, p-channel differential amplifier, a class-AB push-pull output stage and a input level detector using hysteresis comparator are applied. The proposed circuit is realized in a high voltage 0.18um 18V CMOS process technology for display driver IC. The circuit operates at supply voltages from 8V to 18V.

Design of Small-Area eFuse OTP Memory for Line Scan Sensors (Line Scan Sensor용 저면적 eFuse OTP 설계)

  • Hao, Wenchao;Heo, Chang-Won;Kim, Yong-Ho;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1914-1924
    • /
    • 2014
  • In this paper, a small-area cell array method of reducing number of SL drivers requiring large layout areas, where the SL drivers supplying programming currents are routed in the row direction in stead of the column direction for eFuse OTP memory IPs having less number of rows than that of columns such as a cell array of four rows by eight columns, and a core circuit are proposed. By adopting the proposed cell array and core circuit, the layout area of designed 32-bit eFuse OTP memory IP is reduced. Also, a V2V ($=2V{\pm}10%$) regulator necessary for RWL driver and BL pull-up load to prevent non-blown eFuse from being blown from the EM phenomenon by a big current is designed. The layout size of the designed 32-bit OTP memory IP having a cell array of four rows by eight columns is 13.4% smaller with $120.1{\mu}m{\times}127.51{\mu}m$ ($=0.01531mm^2$) than that of the conventional design with $187.065{\mu}m{\times}94.525{\mu}m$ ($=0.01768mm^2$).

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.