• Title/Summary/Keyword: Load prediction

Search Result 1,427, Processing Time 0.025 seconds

Ice Load Prediction Formulas for Icebreaking Cargo Vessels (쇄빙상선의 빙하중 추정식 고찰)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • One of the concerns that arise during navigation in ice-covered waters is the magnitude of ice loads encountered by ships. However, the accurate estimation of ice loads still remains as a rather difficult task in the design of icebreaking vessels. This paper focuses on the development of simple ice load prediction formulas for the icebreaking cargo vessels. The maximum ice loads are expected from unbroken ice sheet and these loads are most likely to be concentrated at the bow area. Published ice load data for icebreaking vessels, from the model tests and also from full-scale sea trials, are collected and then several ice load prediction formulas are compared with these data. Finally, based on collected data, a semi-empirical ice load prediction formula is recommended for the icebreaking cargo vessels.

Dynamic performance prediction of a Supercritical oil firing boiler - Load Runback simulation in a 650MWe thermal power plant (초임계 오일 연소 보일러의 동특성 예측 연구 - 650MWe급 화력발전소의 Load Runback 모사)

  • Yang, Jongin;Kim, Jungrae
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.19-20
    • /
    • 2014
  • Boiler design should be desinged to maximize thermal efficiency of the system under imposed load requirement and a boiler should be validated for transient operation. If a proper prediction is possible on the transient behavior and transient characteristics of a boiler, one may asses the performance of boiler component, control logics and operation procedures. In this work, dynamic modeling method of boiler is presented and dynamic simulation of load runback scenario was carried out on suprecritical oil-firing boiler.

  • PDF

A Study on Peak Load Prediction Using TCN Deep Learning Model (TCN 딥러닝 모델을 이용한 최대전력 예측에 관한 연구)

  • Lee Jung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.251-258
    • /
    • 2023
  • It is necessary to predict peak load accurately in order to supply electric power and operate the power system stably. Especially, it is more important to predict peak load accurately in winter and summer because peak load is higher than other seasons. If peak load is predicted to be higher than actual peak load, the start-up costs of power plants would increase. It causes economic loss to the company. On the other hand, if the peak load is predicted to be lower than the actual peak load, blackout may occur due to a lack of power plants capable of generating electricity. Economic losses and blackouts can be prevented by minimizing the prediction error of the peak load. In this paper, the latest deep learning model such as TCN is used to minimize the prediction error of peak load. Even if the same deep learning model is used, there is a difference in performance depending on the hyper-parameters. So, I propose methods for optimizing hyper-parameters of TCN for predicting the peak load. Data from 2006 to 2021 were input into the model and trained, and prediction error was tested using data in 2022. It was confirmed that the performance of the deep learning model optimized by the methods proposed in this study is superior to other deep learning models.

Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method (실시간 가중 회기최소자승법을 사용한 익일 부하예측)

  • 한도영;이재무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF

Adaptive Antenna Muting using RNN-based Traffic Load Prediction (재귀 신경망에 기반을 둔 트래픽 부하 예측을 이용한 적응적 안테나 뮤팅)

  • Ahmadzai, Fazel Haq;Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.633-636
    • /
    • 2022
  • The reduction of energy consumption at the base station (BS) has become more important recently. In this paper, we consider the adaptive muting of the antennas based on the predicted future traffic load to reduce the energy consumption where the number of active antennas is adaptively adjusted according to the predicted future traffic load. Given that traffic load is sequential data, three different RNN structures, namely long-short term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM) are considered for the future traffic load prediction. Through the performance evaluation based on the actual traffic load collected from the Afghanistan telecom company, we confirm that the traffic load can be estimated accurately and the overall power consumption can also be reduced significantly using the antenna musing.

Electric Power Load Forecasting using Fuzzy Prediction System (퍼지 예측 시스템을 이용한 전력 부하 예측)

  • Bang, Young-Keun;Shim, Jae-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1590-1597
    • /
    • 2013
  • Electric power is an important part in economic development. Moreover, an accurate load forecast can make a financing planning, power supply strategy and market research planned effectively. This paper used the fuzzy logic system to predict the regional electric power load. To design the fuzzy prediction system, the correlation-based clustering algorithm and TSK fuzzy model were used. Also, to improve the prediction system's capability, the moving average technique and relative increasing rate were used in the preprocessing procedure. Finally, using four regional electric power load in Taiwan, this paper verified the performance of the proposed system and demonstrated its effectiveness and usefulness.

Development of Program for prediction of Mid-long term Load density in region and district respectively. (지역별,관리구별 중장기 부하밀도 예측 프로그램의 개발)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.307-309
    • /
    • 2000
  • This paper presents development of program for mid-tong term load forecasting in region and district respectively. In this program, at first, the region is classified by KEPCO branch which can be analyzed in light of curl·elation between load characteristics and economic indicator and then, prediction for load density in each region was performed by scenario of economic, population and city plan. Secondly, prediction for load density in each district is performed by methodology which is based on land use method. Finally efficiency for prediction work in each KEPCO branch could be identified by applying the developed program to the Seoul city in real.

  • PDF

Short-term Electrical Load Forecasting Using Neuro-Fuzzy Model with Error Compensation

  • Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997.

LSTM Model-based Prediction of the Variations in Load Power Data from Industrial Manufacturing Machines

  • Rita, Rijayanti;Kyohong, Jin;Mintae, Hwang
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.295-302
    • /
    • 2022
  • This paper contains the development of a smart power device designed to collect load power data from industrial manufacturing machines, predict future variations in load power data, and detect abnormal data in advance by applying a machine learning-based prediction algorithm. The proposed load power data prediction model is implemented using a Long Short-Term Memory (LSTM) algorithm with high accuracy and relatively low complexity. The Flask and REST API are used to provide prediction results to users in a graphical interface. In addition, we present the results of experiments conducted to evaluate the performance of the proposed approach, which show that our model exhibited the highest accuracy compared with Multilayer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM) models. Moreover, we expect our method's accuracy could be improved by further optimizing the hyperparameter values and training the model for a longer period of time using a larger amount of data.

Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System (신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측)

  • Bang, Young-Keun;Kim, Jae-Hyoun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.