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Abstract 
This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy 
models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind 
this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation 
scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the 
proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation 
(KEPCO) in 1996 and 1997. 
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1. Introduction 
 
The short-term electrical load forecasting systems that 

provide the prediction of the system load over an interval 
ranging from one hour to one week are used for hydro 
scheduling, unit commitment, and economic load dispatch. The 
accuracy and reliability requirements of the short-term load 
forecasting (STLF) systems have become stricter since optimal 
utilization of generators and power stations completely depends 
on the performance of the STLF.  

In order to cope with such stricter requirements, a number of 
techniques to build STLF models have been suggested in the 
last few decades. They include statistical techniques [1-2], 
expert system based approaches [3] and artificial neural 
network based models [4-7]. 

Recently, artificial neural networks have been considered as 
a very promising approach for developing STLF models of 
enhanced performance. Park et al. [4] presented that multilayer 
feedforward neural networks could be applied to construct 
STLF models. In their method, the multilayer feedforward 
networks learned the relationship between the input variables 
and the system loads. Chow et al. [5] investigated a method to 
improve the performance of STLF models by using weather 
factors for the inputs of the multilayer feedforward neural 
networks. Khotanzad et al. [6] proposed an artificial neural 
network approach in which multiple modules were elaborately 
designed to predict weekday loads as well as weekend and 
special day loads.  

In order to overcome the black box drawbacks of the 

multilayer feedforward neural networks, Bakirtzis et al. [8] 
presented a STLF model of 24-hours lead-time by using neuro-
fuzzy models. In their approach, 168 separate neuro-fuzzy 
models were constructed in which each neuro-fuzzy model was 
trained for a particular hour of the day. Mori et al. [9] 
developed an one-hour ahead load forecasting system by using 
a neuro-fuzzy model of 36 fuzzy in-then rules.  

Park and Wang [10] showed that a proper initialization 
scheme for neuro-fuzzy models can improve the performance 
of load forecasting system. Shim and Wang [11] proposed a 
systematic method to compute a reliability measure for STLF 
using neuro-fuzzy models. 

This paper further improves the accuracy performance of 
STLF using neuro-fuzzy models incorporating the error 
information acquired over the past prediction procedure with 
the current prediction. The idea behind the error compensation 
comes from the bias normally observed on the prediction 
models trained through the past data. The proposed enhanced 
scheme is tested on the data obtained from KEPCO in 1997 and 
shows a considerable improvement can be made, suggesting 
higher possibility of practical use of the proposed STLF based 
on neuro-fuzzy models. 

 
 

2. Neuro-Fuzzy Model based Short-term  
Load Forecasting 

 
2.1 Basics of neuro-fuzzy models 

A neuro-fuzzy model can represent a fuzzy rulebase that 
consists of a set of fuzzy if-then rules of the following form: 
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where xj (1≤j≤n) are the input variables, y is the output variable, 
and A i and qi

j  (1≤i≤p) are fuzzy sets characterized by the 
membership functions. 
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Fig. 1 Architecture of a neuro-fuzzy model.
 
A class of feedforward neural networks can implement the 

neuro-fuzzy systems [12, 13]. Suppose that we have two fuzzy 
rules where each fuzzy rule has two inputs and a single output. 
The architecture of the corresponding neuro-fuzzy model is 
shown in Fig. 1. The input term nodes in the first layer 
represent the membership functions given in the fuzzy values 
of the premise part. The input term node denoted as Aj

i accepts 
xj as the input and produces the degree of matching between xj 
and its corresponding membership function. If we use the 
Gaussian membership functions for Aj

i, the output of the input 
term node is given by 
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where cj
i and σj

i
 are called the premise parameters.  

The ith node in the second layer produces the output that 
represents the firing strength of the ith rule:  
  (3) 

)()(
1

j

n

j
Ai xxR i

j
∏
=

= μ

The output term node in the third layer computes the value of 
the normalized firing strengths:  
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The last layer acts as the defuzzifier. If we use the center of 
gravity defuzzification from local centroids, the output of this 
layer can be written as 
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2.2 Structure identification of NFM 

Neuro-fuzzy modeling involves structure learning and 
parameter learning. Structure learning of the NFM deals with 
two sub-problems: input variables selection and input space 
partitioning. The problem of input variables selection is to 
select a set of relevant input variables from finite number of   
possible candidates. The problem of input space partitioning, 
on the other hand, is to find a set of initial fuzzy partitions. We 

can initialize the NFM by using the initial fuzzy partitions 
obtained since they correspond to the parameters of the input 
term nodes of the NFM. 

A number of attempts have been made to partition the input 
space of the NFM. Sun [14] proposed fuzzy k-d trees which 
partition the input space from a series of guillotine cuts. Sugeno 
and Yasukawa [15] developed a scatter partitioning method 
that used the fuzzy c-means algorithm. Kubat [16] developed a 
method to initialize the parameters of the radial basis function 
networks by using the decision tree learning.  

This paper partitions the input space by the method of Kubat 
since the decision tree learning is very fast. Fig. 5 shows the 
procedure of the input space partition of NFM using the 
decision tree. The procedure first performs the clustering on the 
output data and projects the resultant clusters into the input 
space. At this point, the problem of function approximation is 
converted to that of classification. The procedure next applies 
the decision tree learning to the converted classification 
problem and initializes the NFM using the results of the 
decision tree learning. Since the goal of the input space 
partitioning is to provide a better initial guess for the parameter 
learning, its performance has to be evaluated on the model 
resulted from the parameter learning. For this, the method starts 
with the minimum number of clusters, i.e., c=2 and then 
increments it until the identified model satisfies the 
prespecified conditions.  

 
Initial clustering and projection: The initial clustering 
clusters the output data and projects the resultant clusters into 
the input space. For the initial clustering we adopt the method 
presented in [17] which uses the fuzzy c-means algorithm [18]. 
As a result of the clustering, every output data yi is associated 
with the grade of membership belonging to the fuzzy clusters 
Õ ’s where i=1,2,…,N and j=1,2,…,c: j
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iwhere μÕ(y ) is the grade of the ith data belonging to the jth 
cluster, N is the number of data to be clustered, and c is the 
number of clusters.  

Once we complete the clustering, we project the fuzzy 
clusters in the output space into the input space. For this, we 
first transform the fuzzy clusters into the crisp clusters. The 
crisp cluster to which yi belongs is determined by taking the 
fuzzy cluster whose grade of membership of yi is the 
maximum: 
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A projected input cluster Pj is found by identifying a group 
of the input data, which are associated with all the output data 
belonging to a crisp cluster Oj. This leads us to c groups of the 
input data. 

 
Decision tree learning: The groups of the input data resulted 
from the projection have arbitrary shapes. It is necessary to 
refine the shapes of the groups, since the neuro-fuzzy models 

328 

 

 



 

 

Short-term Electrical Load Forecasting Using Neuro-Fuzzy Model with Error Compensation 

can implement only hyper-rectangular partitions. The decision 
tree learning can serve as a tool for the shape refinement. 
Suppose that we apply the decision tree learning to a 
classification problem and the tree learning produces the binary 
tree shown in Fig. 2.(a). We can interpret the binary tree as the 
partitions of the input space as shown in Fig. 2.(b). It should be 
noted that a leaf node in the binary tree corresponds to a fuzzy 
rule of the NFM and the number of leaf nodes is that of the 
fuzzy rules of the NFM. For the simulations in Section 4, C4.5 
algorithm developed by Quinlan is used [19]. 
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Fig. 2 A binary decision tree and the associated input space 

partitions. 
 

Initialization of NFM: We initialize the premise parameters of 
the neuro-fuzzy model based on a binary tree produced by the 
decision tree learning. Suppose that we try to initialize a NFM 
that has n input variables. A fuzzy rule in the NFM is 
represented by n-dimensional hyper-rectangle in the input 
space. The initialization is done by assigning a membership 
function to each edge of the hyper-rectangle. If we assume that 
the Gaussian membership functions are employed, the centers 
of the Gaussian membership functions for the ith hyper-
rectangle Hi are simply given by 
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where xi
jmin and xi

jmax are the values of the left edge and the 
right edge in the xj-direction, respectively. The width of the 
membership function is given by  

 ,,,2,1  and  ,,2,1for   ,
])1[ln( 21

max njpi
cx i

j
i
ji

j ΚΚ ==
−

=
α

σ  (9) 

where α is the value of the α-cut fuzzy set, which is used for 
constructing the hyper-rectangle. The consequent parameter 
associated with Hi is initialized by using the centers of the 
output fuzzy clusters: 
  (10)  , m

i vq =

if the number of data belonged to the mth cluster in Hi is the 
maximum. 

 
2.3 Construction of STLF system using NFM 

In [10], Park and Wang applied the input space partitioning 
method to construct more accurate and reliable NFM based 
STLF system. This section reviews their approach, the one-

hour ahead load forecasting system using NFM. Fig. 3 shows 
the schematic diagram of the method that consists of the input 
space partitioning of NFM for constructing initial structure 
bank, and the parameter learning of NFM for building STLF. 
An important feature of the method is to decompose the whole 
prediction problem into a number of smaller sub-problems. The 
decomposition is supported by the fact that the daily load 
patterns can be classified into 4 groups [7]. For instance, the 
hourly load shapes of the weekdays from Tuesday to Friday are 
similar to each other. However, the load shapes of Saturday, 
Sunday and Monday are dissimilar to those of the weekdays. 
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Set 73Set 49Set 25Set 11

Mon.Sun.Sat.Normal

Sets of Training Data for ISP of NFM
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Apply Input

Electrical Load DB
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Values of current input
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Initial Structure Bank
(96 initial structures)

NFM

NFM based STLF
Forecast

Command
Day and Hour

… … … … …

Fig. 3 NFM based short-term load forecasting system. 
 

Table 1. Input variables and output variable. 

Input Variables Output Variable 

p(i, t-1),  p(i-1, t) p(i, t) 

 
The method employs two input variables listed in Table 1. In 

Table 1, i denotes the day of prediction and t represents the 
time of the day. Given the input variables, we can construct a 
set of training data from the electrical load database for initial 
structure bank. It should be noted that the input variable 
selection is a very important factor in order to obtain a 
satisfactory performance of a prediction model. It is quite 
surprising that only two input variables listed in Table 1 can 
build STLF successfully. 
 

p(t-2) p(t-1) p(t)
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p(t-2) p(t-1) p(t)
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A set of N training data

                                               Input data corresponding to day (i -7)    p(i-7, t)

                                               Input data corresponding to day (i -14)    p(i-14, t)

                                               Input data corresponding to day (i -7(N -1)) p(i-7(N-1), t)

                                               Input data corresponding to day (i -7N)    p(i-7N, t)

         3 4  5 61 2 7 8 9 10 11 12 13 14

Fig. 4 A set of training data.
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The initial structure bank is created by using the procedure 
shown in Fig. 5. In order to create an initial structure IS(d,t), 
we initially set the number of clusters to 2 and perform 
clustering task by using the training data associated with time t 
of day type d. We next apply the decision tree learning 
algorithm. If the number of rules generated by the decision tree 
learning is less than that of predetermined allowable rules, then 
we initialize a NFM and train the initialized NFM by using the 
method in [20]. If the performance of the trained NFM is better 
than that of requirement, we save the set of the initial 
parameters into the initial structure bank. Otherwise, we 
increment the number of clusters and repeat the whole 
procedure. In the case that the number of the resultant rules is 
greater than that of the allowable rules, we prune the decision 
tree so that it can generate the initial structure of a fewer 
number of rules. We save the resulting initial structure into the 
initial structure bank. 
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Projection to Input space

number of rules < maximum 
number of rules

Parameter learning of NFM

  Model error < Allowable 
error

end

Associated 
training data

Yes

No

c     c+1 and 
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Decision tree learning
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Nopruning 

Parameter learning of NFM

Input Space Partitioning of NFM

 
Fig. 5 Algorithm to create an initial structure. 

 
In order to compute the one-hour ahead load forecast ),( tip) , 

where day i belongs to day type d, we download the initial 
structure IS(d,t) from the initial structure bank and initialize the 
parameters of the NFM. Using the training data associated with 
the prediction time, we optimize the parameters of NFM. It 
should be noted that the initialization scheme using the initial 
structure speeds up the parameter optimization. After the 
parameter learning, we apply the input vector to the trained 
NFM in order to obtain the load forecast. It should be noted 
that the proposed method builds STLF with lead-time of one 
hour by training the NFM every hour. 

 
 
3. Improving NFM based STLF using Error 

Compensation 
 
Fig. 6 shows the typical forecasting results of a day in 

summer season where the prediction performance is severely 
degraded. In Fig. 6, the ‘x’ marks are the forecasted loads, the 
centered solid line is the actual load, and the outer solid lines 
represent 90% confidence interval. The confidence interval 

itself is not reliable for a day when a load forecasting is not 
accurate.  

 

 
Fig. 6 Sample outputs of the NFM based STLF. 

 
A certain level of bias exists in the forecasting, providing the 

major cause for the degradation. This observation leads to the 
improvement scheme that uses the prior forecasting error for 
adjusting the current load forecasting.  

Although there are a lot of candidates to compensate the 
predicted load, we employ a method reported in [21]: 

[ ]100/)1,(1),(),( −⋅−= tiPEtipticp α  (11) 

where cp(i, t) is the compensated load forecast, PE(i, t-1) is 
the percent error obtained from the forecast at the previous 
hour, t-1, and α  is the scaling factor ranging from 0 to 1. 

The compensation in (11) subtracts a small amount 
proportional to the percent error obtained at the previous hour. 
The proportional constant, α , has to be determined by a trial 
error method. Extensive simulations have been performed in 
order to find a better constant that produces the best 
compensation. It turns out that finding a single value of α  is 
not possible, since different α  produces the best 
compensation according to the days and months. There is, 
however, a certain trend, so that we can set α  to the value 
that produces a better results on average. We will discuss the 
details of this in Section 4. 

 
 

4. Simulation Results  
 

The proposed method was implemented and tested on the 
actual load data collected by KEPCO in 1997. The training data 
from Jan. 11, 1997 to Jan. 20, 1997 were used for constructing 
the initial structure bank, shown in Table 2.  

 
Table 2. Training data set for the initial structure bank. 

Type Date Period Number of  
training data 

Weekdays Jan. 14, 1997 
~ Jan. 17, 1997 4 days 200 

Saturday Jan. 11, 1997  
Jan. 18, 1997 2 days 100 

Sunday Jan. 12, 1997 
Jan. 19, 1997 2 days 100 

Monday Jan. 13, 1997 
Jan. 20, 1997 2 days 100 
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The proposed error compensation scheme is required to set According to the procedure given in Fig. 5, 96 initial 
structures were generated. Table 3 summarizes the results of 
the input space partitioning when the maximum number of 
fuzzy rules and the allowable error are set to 10 and 1%, 
respectively. The initial structures for the weekdays have 3.9 
rules on average, while the average numbers of the rules for 
Sat., Sun. and Mon. are 4.2, 3.9 and 3.9, respectively. We 
initialized the NFM by using the initial structure corresponding 
to the prediction time. We also prepared the training data set 
consisted of 50 elements for learning the parameters of the 
initialized NFM. 

α α α properly. We tried several values of and found =0.9 
produced the best compensation on average. It should be noted 
that in [21] they obtained the best result at α =0.3. The results 
of the error compensation in load forecasting are listed in Table 
4. We included the forecasting without compensation (α =0) 
and that with compensation of α =0.9. As seen in Table 4, 
about 38% improvement can be achieved by the proposed 
compensation scheme which can be considered a lot in short-
term load forecasting. Furthermore, standard deviation of 
MAPE of STLF is also reduced, implying that we can achieve a 
more reliable forecasting system by the error compensation. We initialized the NFM by using the initial structure 

corresponding to the prediction time. We also prepared the 
training data set consisted of 50 elements for learning the 
parameters of the initialized NFM. Its structure is illustrated in 
Fig. 4. According to the input and output variables, the 12

 
Table 4. Performance comparison: Load forecasting without 
compensation and with compensation. 

th and 
the 14   June July Aug. Sept. Avg.th components of the input data in Fig. 4 were picked up 
to prepare the training data set.  MAPE 1.37 2.04 2.28 1.14 1.71α =0

Std. 1.25 2.23 1.74 1.07 1.57In order to demonstrate the effectiveness of the proposed 
compensation scheme, we applied it to the period of summer 
season (four months) where forecasting performance is often 
degraded. We use mean absolute percentage error (MAPE) for 
assessing the performance of the STLF:  

MAPE 1.03 1.08 1.05 1.04 1.05α =0.9
Std. 0.98 1.15 0.89 0.95 0.99

 
 

4. Conclusions  
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In this paper, we propose a method to improve the 
performance of an existing NFM based STLF by using the 
error compensation. The proposed method employs the 
compensation scheme that adjusts the predicted value of 
current load according to the prior prediction error. Simulation 
results reveal that this simple compensation can significantly 
improve the accuracy performance of the NFM based STLF, 
suggesting higher possibility of the application of the NFM 
based STLF in the real world.  

p)where p is the actual load and  is the forecasted load.  

To find the performance of the NFM based STLF, refer to 
[10]. The purpose of this paper is to increase the performance 
of the STLF, assuming that the baseline prediction is given in 
the approach in [10]. 
 
Table 3. Number of fuzzy rules and training error for the initial 
structure.  

 
Type Weekdays Saturday Sunday Monday 

Hour Number 
of rule 

Training 
error 

Number 
of rule 

Training 
error 

Number 
of rule 

Training 
error 

Number 
of rule

Training 
error 

1 2 0.6061 6 0.7664 6 0.8303 4 0.6362 
2 4 0.5489 2 0.4193 5 0.5341 2 0.6314 
3 2 0.4658 4 0.4170 4 0.4027 2 0.5708 
4 4 0.4404 4 0.3882 4 0.4548 2 0.4423 
5 2 0.3618 2 0.4350 2 0.3997 4 0.4901 
6 4 0.4751 4 0.3232 4 0.3305 5 0.5273 
7 2 0.5359 2 0.5409 4 0.5609 4 0.6033 
8 4 0.7335 5 0.6778 7 0.6776 5 0.8469 
9 4 1.1010 8 0.9054 4 0.8749 8 0.9529 

10 8 1.8935 7 1.4056 4 0.7867 4 0.7743 
11 4 0.5368 2 0.5832 2 0.6409 2 0.4778 
12 4 0.4102 4 0.5718 2 0.8984 2 0.5801 
13 4 0.5889 2 0.7160 2 0.8039 5 0.8933 
14 2 0.6960 4 0.8538 2 0.6179 2 0.6272 
15 2 0.4705 4 0.6074 2 0.5828 2 0.5392 
16 2 0.4264 4 0.7400 4 0.5138 4 0.5195 
17 4 0.7911 4 0.6812 5 0.7716 4 0.4805 
18 6 1.8384 6 1.2361 7 0.8733 8 0.8326 
19 5 1.2601 4 0.8425 4 1.1207 7 0.8646 
20 7 0.9879 8 0.7219 6 0.9237 6 0.8625 
21 5 0.9325 5 0.7500 6 0.8904 4 0.7906 
22 4 0.4177 2 0.3242 4 0.3894 2 0.3976 
23 4 0.5792 4 0.8719 2 0.8120 2 0.5942 
24 4 0.5586 4 0.6461 2 0.7589 4 0.4214 

Ave. 3.9 0.7357 4.2 0.6844 3.9 0.6854 3.9 0.6399 
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	Abstract 
	This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997. 
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	1. Introduction 
	 
	The short-term electrical load forecasting systems that provide the prediction of the system load over an interval ranging from one hour to one week are used for hydro scheduling, unit commitment, and economic load dispatch. The accuracy and reliability requirements of the short-term load forecasting (STLF) systems have become stricter since optimal utilization of generators and power stations completely depends on the performance of the STLF.  
	In order to cope with such stricter requirements, a number of techniques to build STLF models have been suggested in the last few decades. They include statistical techniques [1-2], expert system based approaches [3] and artificial neural network based models [4-7]. 
	Recently, artificial neural networks have been considered as a very promising approach for developing STLF models of enhanced performance. Park et al. [4] presented that multilayer feedforward neural networks could be applied to construct STLF models. In their method, the multilayer feedforward networks learned the relationship between the input variables and the system loads. Chow et al. [5] investigated a method to improve the performance of STLF models by using weather factors for the inputs of the multilayer feedforward neural networks. Khotanzad et al. [6] proposed an artificial neural network approach in which multiple modules were elaborately designed to predict weekday loads as well as weekend and special day loads.  
	In order to overcome the black box drawbacks of the multilayer feedforward neural networks, Bakirtzis et al. [8] presented a STLF model of 24-hours lead-time by using neuro-fuzzy models. In their approach, 168 separate neuro-fuzzy models were constructed in which each neuro-fuzzy model was trained for a particular hour of the day. Mori et al. [9] developed an one-hour ahead load forecasting system by using a neuro-fuzzy model of 36 fuzzy in-then rules.  
	Park and Wang [10] showed that a proper initialization scheme for neuro-fuzzy models can improve the performance of load forecasting system. Shim and Wang [11] proposed a systematic method to compute a reliability measure for STLF using neuro-fuzzy models. 
	This paper further improves the accuracy performance of STLF using neuro-fuzzy models incorporating the error information acquired over the past prediction procedure with the current prediction. The idea behind the error compensation comes from the bias normally observed on the prediction models trained through the past data. The proposed enhanced scheme is tested on the data obtained from KEPCO in 1997 and shows a considerable improvement can be made, suggesting higher possibility of practical use of the proposed STLF based on neuro-fuzzy models. 
	 
	 


	2. Neuro-Fuzzy Model based Short-term  
	Load Forecasting 
	 
	2.1 Basics of neuro-fuzzy models 
	A neuro-fuzzy model can represent a fuzzy rulebase that consists of a set of fuzzy if-then rules of the following form: 
	  (1) 

	where xj (1 j n) are the input variables, y is the output variable, and Aji and qi (1 i p) are fuzzy sets characterized by the membership functions. 
	 
	 
	A class of feedforward neural networks can implement the neuro-fuzzy systems [12, 13]. Suppose that we have two fuzzy rules where each fuzzy rule has two inputs and a single output. The architecture of the corresponding neuro-fuzzy model is shown in Fig. 1. The input term nodes in the first layer represent the membership functions given in the fuzzy values of the premise part. The input term node denoted as Aji accepts xj as the input and produces the degree of matching between xj and its corresponding membership function. If we use the Gaussian membership functions for Aji, the output of the input term node is given by 
	   (2) 

	where cji and σji are called the premise parameters.  
	The ith node in the second layer produces the output that represents the firing strength of the ith rule:  
	   (3) 

	The output term node in the third layer computes the value of the normalized firing strengths:  
	   (4) 

	The last layer acts as the defuzzifier. If we use the center of gravity defuzzification from local centroids, the output of this layer can be written as 
	   (5) 

	 

	2.2 Structure identification of NFM 
	Neuro-fuzzy modeling involves structure learning and parameter learning. Structure learning of the NFM deals with two sub-problems: input variables selection and input space partitioning. The problem of input variables selection is to select a set of relevant input variables from finite number of   possible candidates. The problem of input space partitioning, on the other hand, is to find a set of initial fuzzy partitions. We can initialize the NFM by using the initial fuzzy partitions obtained since they correspond to the parameters of the input term nodes of the NFM. 
	A number of attempts have been made to partition the input space of the NFM. Sun [14] proposed fuzzy k-d trees which partition the input space from a series of guillotine cuts. Sugeno and Yasukawa [15] developed a scatter partitioning method that used the fuzzy c-means algorithm. Kubat [16] developed a method to initialize the parameters of the radial basis function networks by using the decision tree learning.  
	This paper partitions the input space by the method of Kubat since the decision tree learning is very fast. Fig. 5 shows the procedure of the input space partition of NFM using the decision tree. The procedure first performs the clustering on the output data and projects the resultant clusters into the input space. At this point, the problem of function approximation is converted to that of classification. The procedure next applies the decision tree learning to the converted classification problem and initializes the NFM using the results of the decision tree learning. Since the goal of the input space partitioning is to provide a better initial guess for the parameter learning, its performance has to be evaluated on the model resulted from the parameter learning. For this, the method starts with the minimum number of clusters, i.e., c=2 and then increments it until the identified model satisfies the prespecified conditions.  
	 
	Initial clustering and projection: The initial clustering clusters the output data and projects the resultant clusters into the input space. For the initial clustering we adopt the method presented in [17] which uses the fuzzy c-means algorithm [18]. As a result of the clustering, every output data yi is associated with the grade of membership belonging to the fuzzy clusters Õj’s where i=1,2, ,N and j=1,2, ,c: 
	   (6) 

	where μÕ(yi) is the grade of the ith data belonging to the jth cluster, N is the number of data to be clustered, and c is the number of clusters.  
	Once we complete the clustering, we project the fuzzy clusters in the output space into the input space. For this, we first transform the fuzzy clusters into the crisp clusters. The crisp cluster to which yi belongs is determined by taking the fuzzy cluster whose grade of membership of yi is the maximum: 
	   (7) 

	A projected input cluster Pj is found by identifying a group of the input data, which are associated with all the output data belonging to a crisp cluster Oj. This leads us to c groups of the input data. 
	 
	Decision tree learning: The groups of the input data resulted from the projection have arbitrary shapes. It is necessary to refine the shapes of the groups, since the neuro-fuzzy models can implement only hyper-rectangular partitions. The decision tree learning can serve as a tool for the shape refinement. Suppose that we apply the decision tree learning to a classification problem and the tree learning produces the binary tree shown in Fig. 2.(a). We can interpret the binary tree as the partitions of the input space as shown in Fig. 2.(b). It should be noted that a leaf node in the binary tree corresponds to a fuzzy rule of the NFM and the number of leaf nodes is that of the fuzzy rules of the NFM. For the simulations in Section 4, C4.5 algorithm developed by Quinlan is used [19]. 
	 
	 
	Initialization of NFM: We initialize the premise parameters of the neuro-fuzzy model based on a binary tree produced by the decision tree learning. Suppose that we try to initialize a NFM that has n input variables. A fuzzy rule in the NFM is represented by n-dimensional hyper-rectangle in the input space. The initialization is done by assigning a membership function to each edge of the hyper-rectangle. If we assume that the Gaussian membership functions are employed, the centers of the Gaussian membership functions for the ith hyper-rectangle Hi are simply given by 
	   (8) 

	where xijmin and xijmax are the values of the left edge and the right edge in the xj-direction, respectively. The width of the membership function is given by  
	   (9) 

	where α is the value of the  -cut fuzzy set, which is used for constructing the hyper-rectangle. The consequent parameter associated with Hi is initialized by using the centers of the output fuzzy clusters: 
	   (10) 

	if the number of data belonged to the mth cluster in Hi is the maximum. 
	 

	2.3 Construction of STLF system using NFM 
	In [10], Park and Wang applied the input space partitioning method to construct more accurate and reliable NFM based STLF system. This section reviews their approach, the one-hour ahead load forecasting system using NFM. Fig. 3 shows the schematic diagram of the method that consists of the input space partitioning of NFM for constructing initial structure bank, and the parameter learning of NFM for building STLF. An important feature of the method is to decompose the whole prediction problem into a number of smaller sub-problems. The decomposition is supported by the fact that the daily load patterns can be classified into 4 groups [7]. For instance, the hourly load shapes of the weekdays from Tuesday to Friday are similar to each other. However, the load shapes of Saturday, Sunday and Monday are dissimilar to those of the weekdays. 
	 
	The method employs two input variables listed in Table 1. In Table 1, i denotes the day of prediction and t represents the time of the day. Given the input variables, we can construct a set of training data from the electrical load database for initial structure bank. It should be noted that the input variable selection is a very important factor in order to obtain a satisfactory performance of a prediction model. It is quite surprising that only two input variables listed in Table 1 can build STLF successfully. 
	The initial structure bank is created by using the procedure shown in Fig. 5. In order to create an initial structure IS(d,t), we initially set the number of clusters to 2 and perform clustering task by using the training data associated with time t of day type d. We next apply the decision tree learning algorithm. If the number of rules generated by the decision tree learning is less than that of predetermined allowable rules, then we initialize a NFM and train the initialized NFM by using the method in [20]. If the performance of the trained NFM is better than that of requirement, we save the set of the initial parameters into the initial structure bank. Otherwise, we increment the number of clusters and repeat the whole procedure. In the case that the number of the resultant rules is greater than that of the allowable rules, we prune the decision tree so that it can generate the initial structure of a fewer number of rules. We save the resulting initial structure into the initial structure bank. 
	 
	In order to compute the one-hour ahead load forecast  , where day i belongs to day type d, we download the initial structure IS(d,t) from the initial structure bank and initialize the parameters of the NFM. Using the training data associated with the prediction time, we optimize the parameters of NFM. It should be noted that the initialization scheme using the initial structure speeds up the parameter optimization. After the parameter learning, we apply the input vector to the trained NFM in order to obtain the load forecast. It should be noted that the proposed method builds STLF with lead-time of one hour by training the NFM every hour. 
	 
	 


	3. Improving NFM based STLF using Error Compensation 
	 
	Fig. 6 shows the typical forecasting results of a day in summer season where the prediction performance is severely degraded. In Fig. 6, the ‘x’ marks are the forecasted loads, the centered solid line is the actual load, and the outer solid lines represent 90% confidence interval. The confidence interval itself is not reliable for a day when a load forecasting is not accurate.  
	 
	 
	A certain level of bias exists in the forecasting, providing the major cause for the degradation. This observation leads to the improvement scheme that uses the prior forecasting error for adjusting the current load forecasting.  
	Although there are a lot of candidates to compensate the predicted load, we employ a method reported in [21]: 
	   (11) 

	where cp(i, t) is the compensated load forecast, PE(i, t-1) is the percent error obtained from the forecast at the previous hour, t-1, and   is the scaling factor ranging from 0 to 1. 
	The compensation in (11) subtracts a small amount proportional to the percent error obtained at the previous hour. The proportional constant,  , has to be determined by a trial error method. Extensive simulations have been performed in order to find a better constant that produces the best compensation. It turns out that finding a single value of   is not possible, since different   produces the best compensation according to the days and months. There is, however, a certain trend, so that we can set   to the value that produces a better results on average. We will discuss the details of this in Section 4. 
	 
	 


	4. Simulation Results  
	The proposed method was implemented and tested on the actual load data collected by KEPCO in 1997. The training data from Jan. 11, 1997 to Jan. 20, 1997 were used for constructing the initial structure bank, shown in Table 2.  
	 
	  
	According to the procedure given in Fig. 5, 96 initial structures were generated. Table 3 summarizes the results of the input space partitioning when the maximum number of fuzzy rules and the allowable error are set to 10 and 1%, respectively. The initial structures for the weekdays have 3.9 rules on average, while the average numbers of the rules for Sat., Sun. and Mon. are 4.2, 3.9 and 3.9, respectively. We initialized the NFM by using the initial structure corresponding to the prediction time. We also prepared the training data set consisted of 50 elements for learning the parameters of the initialized NFM. 
	We initialized the NFM by using the initial structure corresponding to the prediction time. We also prepared the training data set consisted of 50 elements for learning the parameters of the initialized NFM. Its structure is illustrated in Fig. 4. According to the input and output variables, the 12th and the 14th components of the input data in Fig. 4 were picked up to prepare the training data set.  
	In order to demonstrate the effectiveness of the proposed compensation scheme, we applied it to the period of summer season (four months) where forecasting performance is often degraded. We use mean absolute percentage error (MAPE) for assessing the performance of the STLF:  
	  , (12) 

	where p is the actual load and   is the forecasted load.  
	To find the performance of the NFM based STLF, refer to [10]. The purpose of this paper is to increase the performance of the STLF, assuming that the baseline prediction is given in the approach in [10]. 
	 
	The proposed error compensation scheme is required to set   properly. We tried several values of  and found  =0.9 produced the best compensation on average. It should be noted that in [21] they obtained the best result at  =0.3. The results of the error compensation in load forecasting are listed in Table 4. We included the forecasting without compensation ( =0) and that with compensation of  =0.9. As seen in Table 4, about 38% improvement can be achieved by the proposed compensation scheme which can be considered a lot in short-term load forecasting. Furthermore, standard deviation of MAPE of STLF is also reduced, implying that we can achieve a more reliable forecasting system by the error compensation. 
	 
	June
	July
	Aug.
	Sept.
	Avg.
	 =0
	MAPE
	1.37
	2.04
	2.28
	1.14
	1.71
	Std.
	1.25
	2.23
	1.74
	1.07
	1.57
	 =0.9
	MAPE
	1.03
	1.08
	1.05
	1.04
	1.05
	Std.
	0.98
	1.15
	0.89
	0.95
	0.99
	 
	 


	4. Conclusions  
	 
	In this paper, we propose a method to improve the performance of an existing NFM based STLF by using the error compensation. The proposed method employs the compensation scheme that adjusts the predicted value of current load according to the prior prediction error. Simulation results reveal that this simple compensation can significantly improve the accuracy performance of the NFM based STLF, suggesting higher possibility of the application of the NFM based STLF in the real world.  
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