• Title/Summary/Keyword: Load mode

Search Result 2,363, Processing Time 0.031 seconds

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Ductility Confinement of RC Rectangular Shear Wall (장방형 철근 콘크리트 전단벽의 연성 보강)

  • 강수민;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.530-539
    • /
    • 2002
  • In designing the boundary confinement of shear walls, the current design provisions and recommendations are empirical and prescriptive; they specify a certain confinement length and details, regardless of the actual requirement of ductility Therefore, they are inappropriate to the performance based-design. The purpose of the present study is to develop a ductility design method that Is applicable to the performance based-design of shear wall. For the purpose, experimental studies were performed to investigate variations in the ductility of shear walls with the length of the boundary confinement. Five specimens modeling the compressive zone of cross sections with different confinement area were tested against eccentric vertical load. Through the experimental studies, strength, ductility, and failure mode of the compression zone were investigated. In addition, nonlinear numerical analyses for the overall cross-sections of shear wall were performed to investigate variations of the stress and strain profiles with the length of compression zone. On the basis of the experimental and numerical studies, a ductility design method for shear wall was developed. By using the proposed design method, for a given ductility demand, the area of lateral confinement and corresponding reinforcement ratio can be precisely determined so that the ductile behavior and economical design are assured.

2~16 GHz GaN Nonuniform Distributed Power Amplifier MMIC (2~16 GHz GaN 비균일 분산 전력증폭기 MMIC)

  • Bae, Kyung-Tae;Lee, Ik-Joon;Kang, Hyun-Seok;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.1019-1022
    • /
    • 2016
  • In this paper, a 2~16 GHz GaN wideband power amplifier MMIC s designed and fabricated using the nonuniform power amplifier design technique that utilizes drain shunt capacitors to simultaneously provide each transistor with the optimum load impedance and phase balance between input and output transmission lines. The power amplifier MMIC chip that is fabricated using the $0.25{\mu}m$ GaN HEMT foundry process of Win Semiconductors occupies an area of $3.9mm{\times}3.1mm$ and shows a linear gain of larger than 12 dB and an input return loss of greater than 10 dB. Under a continuous-wave mode, it has a saturated output power of 36.2~38.5 dBm and a power-added efficiency of about 8~16 % in 2 to 16 GHz.

An Experimental Study for Performance of PSC-I Girders with 60MPa High-Strength Concrete (설계강도 60MPa급 고강도 PSC의 내하성능 검토)

  • Lee, Jae-Yong;Min, Kyung-Hwan;Yang, Jun-Mo;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.9-12
    • /
    • 2008
  • PSC-I girder is widely used in designing bridge. Currently partial advanced country have constructed bridge with high strength concrete, while in-country rather less concrete strength(40MPa) has been used to build bridge girder. So, this paper presents characteristics and behavior of member casted by high strength concrete to apply practically. For this aim, 4 girders were fabricated to investigate performance and structural behavior. Prior to test, structural analysis was performed with common program. Steel gages and concrete gage were filled up to measure longitudinal and vertical strain of reinforcement and concrete. Linear Variable Differential Transducer and concrete surface gage were also set to measure deflection and strain of concrete. Load-deflection relation and crack mode were analyzed at transfer and test and compared with the structural analysis

  • PDF

Nonlinear Analytical Model for RC Flat Plate Frames (RC 플랫 플레이트 골조의 비선형 해석모델)

  • Park, Young-Mi;HwangBo, Jin;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.241-244
    • /
    • 2008
  • In general, RC flat plate frames have been used as a gravity load resisting system(GLRS) in building. This system should be constructed with lateral force resisting system(LFRS) such as shear walls and brace frames. When lateral loads such as earthquakes occur, LFRS undergo displacement by which connected gravity systems experience lateral displacement. Thus, flat plate system designed as GLRS should be predict unbalanced moments and punching failure due to lateral deformation. This study developed an analytical mode for predicting nonlinear behavior of RC slab column connection for the seismic performance evaluation of RC flat plate frames. For verifying the analytical model, the test results of two flat plate specimens having two continous spans with the difference gravity shear ratio($V_g/{\phi}V_c$) were compared with the results of analysis. The developed model can predict the failure modes and punching failures.

  • PDF

Performance Test of Sensorless Speed Control Logic for Gas Turbine Starter (가스터빈 기동장치 센서리스 속도제어로직 성능실험)

  • Ryu, Hoseon;Moon, jooyoung;Lee, Uitaek;Lee, Joohyun;Kang, Yunmo;Park, Manki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • The gas turbine static starter rotates the stationary synchronous machine by the interaction of the rotor and the stator. The detection from the initial position of the rotor has been an important issue to drive with optimum torque. Previously, the gas turbine starter was used by attaching the encoder to the synchronous machine, but the position and velocity of the rotor have been estimated by sensor-less method until recently due to the difficulty in attaching and detaching and damage caused by the shaft voltage noise. In this paper, Rotor initial(stationary state) position estimation, forced commutation control(speed less than 10%), and natural commutation control(speed more than 10%) method using magnetic flux with integrated terminal voltage were presented and the sensor-less speed control performance was verified. As a result of making and evaluating the 29 kVA synchronous machine and the starting device, the performance of each control mode was satisfactory. Furthermore, the applied technology is expected to be used for the development of the gas turbine starter of tens of MW class and the field application.

A Study on the Failure Mode of FRP Bridge Deck in It's Weak Axis (FRP 바닥판의 약축방향 파괴모드에 관한 연구)

  • Kim Byeong-Min;Hwang Yoon-Koog;Lee Young-Ho;Kang Young-Jong;Zi Goang-Seup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.73-83
    • /
    • 2006
  • The failure mechanism of a hollow bridge deck which is made of fiber reinforced polymer (FRP) to improve its durability and life time significantly is investigated using both experiments and analyses. While the Load-displacement behavior of the deck in the longitudinal direction is almost linear just before the failure, the behavior in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. We found that the nonlinearity is due to the imperfection of the connection between the flange and the web; a plastic deformation can t라e place in the connection. The argument is demonstrated using a simple structural model in which a rigid plastic hinge is introduced to the connection. We also checked the contribution of the delamination mechanism to the failure. But the delamination is not the main mechanism which initiates and causes the failure of the bridge deck. In order to improved the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and confirmed the improved behavior by a numerical analysis.

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Fiber-Steel Composite Plates (섬유-강판 복합플레이트로 보강된 RC 보의 휨 거동에 관한 연구)

  • Cho, Baik-Soon;Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.483-491
    • /
    • 2008
  • The effectiveness of a new fiber-steel composite plate designed specifically to be used for strengthening of reinforced concrete members has been investigated. Twelve reinforced concrete beams were tested. Seven of the beams were strengthened with carbon fiber-steel composite plate(CSP), four of the beams were strengthened with glass fiber-steel composite plate(GSP), and one beam was used as a control specimen. The experimental results showed that new strengthening system controls the premature debonding and provides a more ductile failure mode than other conventional strengthening systems. The observed ductility ratios were $3.01\sim3.81$ and $3.55\sim4.95$ for strengthened beam with CSP and GSP, respectively. The maximum load was increased by 115% and 107% for strengthened beam with CSP and GSP, respectively, comparing with control beam. In addition, experimental and analytical results were well agreed.

Propose of Capacity Spectrum Method by Nonlinear Earthquake Response Analysis (질점계 비선형 지진응답해석에 의한 구조물의 역량스펙트럼 제안)

  • You, Jin-Sun;Yang, Won-Jik;Yi, Waon-Ho;Kim, Hyoung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.501-508
    • /
    • 2014
  • In this paper, a method on deducing the capacity spectrum based on nonlinear earthquake response analysis will be introduced. Damage assessment of general building draws the capacity spectrum through the Push-over analysis and the intersection point of capacity spectrum and demand spectrum is seen as performance point. Push-over analysis is the way to perform static analysis by using the equivalent static load changed from the effect of earthquake and predict the behavior of structures by earthquake. But, this method can not be taken into account in the effects of higher mode and the dynamic characteristic. Therefore, in order to calculate the capacity spectrum under dynamic properties of building. A capacity spectrum from going ahead with the nonlinear earthquake response analysis is suggested.