Flexural Behaviors of Reinforced Concrete Beams Strengthened with Fiber-Steel Composite Plates

섬유-강판 복합플레이트로 보강된 RC 보의 휨 거동에 관한 연구

  • 조백순 (경성대학교 건설환경공학부) ;
  • 김성도 (인제대학교 건설기술연구소 토목공학과)
  • Published : 2008.10.30

Abstract

The effectiveness of a new fiber-steel composite plate designed specifically to be used for strengthening of reinforced concrete members has been investigated. Twelve reinforced concrete beams were tested. Seven of the beams were strengthened with carbon fiber-steel composite plate(CSP), four of the beams were strengthened with glass fiber-steel composite plate(GSP), and one beam was used as a control specimen. The experimental results showed that new strengthening system controls the premature debonding and provides a more ductile failure mode than other conventional strengthening systems. The observed ductility ratios were $3.01\sim3.81$ and $3.55\sim4.95$ for strengthened beam with CSP and GSP, respectively. The maximum load was increased by 115% and 107% for strengthened beam with CSP and GSP, respectively, comparing with control beam. In addition, experimental and analytical results were well agreed.

철근콘크리트 보에 대한 섬유-강판 복합플레이트의 보강효과를 연구하였다. 합계 12개 철근콘크리트 보 중, 7개는 탄소 섬유-강판 복합플레이트(CSP)로 보강되었으며, 4개는 유리섬유-강판 복합플레이트(GSP)로 보강되었고, 나머지 1개는 비교를 목적으로 보강되지 않았다. 보강보 실험결과, 새로 개발된 섬유-강판 복합플레이트 보강시스템은 보강재의 조기탈락을 제어하여 연성파괴를 유도하는 것으로 나타났다. 본 연구에 사용된 CSP 보강보의 연성지수는 $3.01\sim3.81$, GSP 보강보의 연성지수는 $3.55\sim4.95$로 측정되었다. ESP 보강보 및 GSP 보강보의 최대하중은 보강하지 않은 기준보에 비해 각각 115%, 107% 향상된 것으로 측정되었다. 또한, 보강보 실험과 해석 결과들은 잘 일치하는 것으로 나타났다.

Keywords

References

  1. 정진환, 김성도, 조백순, 이우철 (2003) 탄소섬유시트 보강 철근콘크리트 보의 공칭휨모멘트-I. 실험적 연구, 대한토목학회논문집, 23(5A), pp.921-929
  2. Arduini, M., Nanni, A. (1997) Behavior of Precracked RC Beams Strengthened with Carbon FRP Sheets, Journal of Composites for Construction, 1(2), pp.63-70 https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(63)
  3. Brena, S. F., Bramblett, R. M., Wood, S. L., Kreger, M. E. (2003) Increasing Flexural Capacity of Reinforced Concrete Beams Using Carbon Fiber- Reinforced Polymer Composites, ACI Structural Journal, 100(1) Jan-Feb., pp.36-46
  4. El-Mihilmy, M. T., Tedesco, J. W. (2000) Analysis of Reinforced Concrete Beams Strengthened with FRP Laminates, Journal of Structural Engineering, ASCE, 126(6), pp.684-691 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:6(684)
  5. Gopalaratnam, V. S., Shah, S. P. (1985) Softening Response of Plain Concrete in Direct Tension, ACI Journal, 82(3), pp.310-323
  6. Gopalaratnam, V. S., Shah, S. P., Batson, G. B., Criwell, M. E., Ramakrishinan, V., Wecharatana, M. (1991) Fracture Toughness of Fiber Reinforced Concrete, ACI Materials Journal, 88(4), pp.339-353
  7. Grace, N. F., Ragheb, W. F., Abdel-Sayed, G. (2003) Flexural and Shear Strengthening of Concrete Beams Using New Triaxially Braided Ductile Fabric, ACI Structural Journal, 100(6), pp.804-814
  8. Ross, C. A., Jerome, D. M., Tedesco, J. W., Hughes, M. L. (1999) Strengthening of Reinforced Concrete Beams with Externally Bonded Composite Laminates, ACI Structural Journal, 96(2), pp.212-220
  9. Shah, S. P. and Fafitis, A., Arnold, R. (1983) Cyclic Loading of Spirally Reinforced Concrete, Journal of Structural Engineering, 109(7), pp.1695-1710 https://doi.org/10.1061/(ASCE)0733-9445(1983)109:7(1695)