• Title/Summary/Keyword: Load mode

Search Result 2,363, Processing Time 0.026 seconds

Moment-based Fast CU Size Decision Algorithm for HEVC Intra Coding (HEVC 인트라 코딩을 위한 모멘트 기반 고속 CU크기 결정 방법)

  • Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.514-521
    • /
    • 2016
  • The High Efficiency Video Coding (HEVC) standard provides superior coding efficiency by utilizing highly flexible block structure and more diverse coding modes. However, rate-distortion optimization (RDO) process for the decision of optimal block size and prediction mode requires excessive computational complexity. To alleviate the computation load, this paper proposes a new moment-based fast CU size decision algorithm for intra coding in HEVC. In the proposed method, moment values are computed in each CU block to estimate the texture complexity of the block from which the decision on an additional CU splitting procedure is performed. Unlike conventional methods which are mostly variance-based approaches, the proposed method incorporates the third-order moments of the CU block in the design of the fast CU size decision algorithm, which enables an elaborate classification of CU types and thus improves the RD-performance of the fast algorithm. Experimental results show that the proposed method saves 32% encoding time with 1.1% increase of BD-rate compared to HM-10.0, and 4.2% decrease of BD-rate compared to the conventional variance-based fast algorithm.

DGNSS-CP Performance Comparison of Each Observation Matrix Calculation Method (관측 행렬 산출 기법 별 DGNSS-CP 성능 비교)

  • Shin, Dong-hyun;Lim, Cheol-soon;Seok, Hyo-jeong;Yoon, Dong-hwan;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.433-439
    • /
    • 2016
  • Several low-cost global navigation satellite system (GNSS) receivers do not support general range-domain correction, and DGNSS-CP (differential GNSS) method had been suggested to solve this problem. It improves its position accuracy by projecting range-domain corrections to the position-domain and then differentiating the stand-alone position by the projected correction. To project the range-domain correction, line-of-sight vectors from the receiver to each satellite should be calculated. The line-of-sight vectors can be obtained from GNSS broadcast ephemeris data or satellite direction information, and this paper shows positioning performance for the two methods. Stand-alone positioning result provided from Septentrio PolaRx4 Pro receiver was used to show the difference. The satellite direction information can reduce the computing load for the DGNSS-CP by 1/15, even though its root mean square(RMS) of position error is bigger than that of ephemeris data by 0.1m.

Application of Neural Network Self Adaptative Control System for A.C. Servo Motor Speed Control (A.C. 서보모터 속도 제어를 위한 신경망 자율 적응제어 시스템의 적용)

  • Park, Wal-Seo;Lee, Seong-Soo;Kim, Yong-Wook;Yoo, Seok-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.103-108
    • /
    • 2007
  • Neural network is used in many fields of control systems currently. However, It is not easy to obtain input-output pattern when neural network is used for the system of a single feedback controller and it is difficult to get satisfied performance with neural network when load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object in place of activation function of Neural Network output node. As the Neural Network self adaptive control system is designed in simple structure neural network input-output pattern problem is solved naturally and real tin Loaming becomes possible through general back propagation algorithm. The effect of the proposed Neural Network self adaptive control algorithm was verified in a test of controlling the speed of a A.C. servo motor equipped with a high speed computing capable DSP (TMS320C32) on which the proposed algorithm was loaded.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Estimation of Modal Parameters for Plastic Film-Covered Greenhouse Arches (비닐하우스 아치구조의 모달계수 산정)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • To a series of vibration records obtained from experimental modal testing using a fixed hammer and roving accelerometers for greenhouse arch structures, modal parameters such as natural frequencies, damping ratios and mode shapes are extracted by applying the two most advanced system identification methods in the frequency-domain up to now, so-called PolyMAX and FDD. The former involves both input and output data, while the latter utilizes only the output data. The possibility of determining the static buckling load, detecting damages, etc., for very slender steel-pipe arches by means of a non-destructive testing method based on vibration measurements is primarily investigated. The extracted modal parameters generally correlated well with those obtained using finite element analysis, demonstrating promising results for further on-going research.

Seismic Performance Evaluation of R/C Different Floor Type Interior Beam-Column Joints in the Middle and High-rise Mixed-use Residential Building (중.고층 주상복합 R/C 건축물의 단차형 내부 보-기둥 접합부 내진성능평가)

  • Ha, Gee-Joo;Shin, Jong-Hak;Huh, Mean-Haeng;Hong, Kun-Ho;Ha, Jae-Hoon;Nam, Young-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.453-454
    • /
    • 2009
  • In this dissertation, experimental program was carried out to study the hysteretic behavior of the reinforced different floor type interior beam-column joint repeated cyclic loads under seismic actions. The test results was as follow. The reinforced interior beam-column joint, designed by the different floor type, was increased energy dissipation capacity and maximum load carrying capacity according to the increase of different floor in comparison to standard specimen. And it was also dissimilar to failure mode adjacent to joint region. energy dissipation capacity of each specimen, designed by the different floor type, was increased 1.1${\sim}$1.35 times in comparison to standard specimen.

  • PDF

Application of a Mechanical Model for the Detailing of the End Anchorage Zone of Prestressed Concrete Members (프리스트레스 콘크리트 부재의 단부정착부의 배근상세를 위한 역학적 모델의 적용)

  • 강원호;방지환;김철희
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.201-211
    • /
    • 1996
  • It is expected that recent development of the mechanical model will replace previous empirical methods of detailing. In this study, a mechanical model is proposed to analyze the behavior of the anchorage zone of prestressed concrete members. Main characteristics of the proposed model lies on its rational consideration of material properties, and concrete strength in biaxial stress state and that of local zone reinforced by spirals. Shear friction strength of concrete surrounding spirals are also considered. The results of' the proposed method as well as the known Strut-and-Tie method and nonlinear finite element analysis are compared with some typical experimental results. We get good agreement to the failure mode as well as the failure load from test results. And it can be shown that three dimentional failure mechanism, which cannot be expected by the method based on 2D analysis, can be explained by proposed model.

A Rotordynamic Analysis of Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation (고속 운전용 건식진공펌프 로터-베어링 시스템의 전체동역학 해석)

  • Kim, Byung-Ok;Lee, An-Sung;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.47-54
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modem semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

Development of a constant pressure feed system using a constant pressure proportional control mode (정압비례제어방식을 적용한 정압급수장치의 개발)

  • 김주명;김광열;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1026-1031
    • /
    • 2003
  • Automatic feed pumps are operated and stopped by a pressure switch. Thus, because of repeated operations and stops of the pumps according to fluctuations of water volume, operation with constant rate and pressure is impossible. Moreover, because of repeated running of the pump, keeping up of constant pressure is impossible and damage and energy loss are weak points of the pimps. To make up for defects of an automatic feed pump, this paper designed and made a static pressure feed system which was composed of a feed water control valve, a flow sensor and a control system. The valve device plays an important part in reducing load of pumps by constant water supply regardless of outflow of water. Outflow of water is determined by infrared diode of the flow sensor. The control system is made of a 8 bit micro-processor and the pump was controled by a specific control algorithm. With the constant pressure feed system, discharge pressure was kept at fixed pressure, accurate operations and stops were smoothly accomplished and the pump was operated with constant pressure. Thus, the constant pressure feed system can be considered as an advanced system which made up for the weak points in the current automatic feed systems.

A New Photovoltaic System Architecture of Module-Integrated Converter with a Single-sourced Asymmetric Multilevel Inverter Using a Cost-effective Single-ended Pre-regulator

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.222-231
    • /
    • 2017
  • In this paper, a new architecture for a cost-effective power conditioning systems (PCS) using a single-sourced asymmetric cascaded H-bridge multilevel inverter (MLI) for photovoltaic (PV) applications is proposed. The asymmetric MLI topology has a reduced number of parts compared to the symmetrical type for the same number of voltage level. However, the modulation index threshold related to the drop in the number of levels of the inverter output is higher than that of the symmetrical MLI. This problem results in a modulation index limitation which is relatively higher than that of the symmetrical MLI. Hence, an extra voltage pre-regulator becomes a necessary component in the PCS under a wide operating bias variation. In addition to pre-stage voltage regulation for the constant MLI dc-links, another auxiliary pre-regulator should provide isolation and voltage balance among the multiple H-bridge cells in the asymmetrical MLI as well as the symmetrical ones. The proposed PCS uses a single-ended DC-DC converter topology with a coupled inductor and charge-pump circuit to satisfy all of the aforementioned requirements. Since the proposed integrated-type voltage pre-regulator circuit uses only a single MOSFET switch and a single magnetic component, the size and cost of the PCS is an optimal trade-off. In addition, the voltage balance between the separate H-bridge cells is automatically maintained by the number of turns in the coupled inductor transformer regardless of the duty cycle, which eliminates the need for an extra voltage regulator for the auxiliary H-bridge in MLIs. The voltage balance is also maintained under the discontinuous conduction mode (DCM). Thus, the PCS is also operational during light load conditions. The proposed architecture can apply the module-integrated converter (MIC) concept to perform distributed MPPT. The proposed architecture is analyzed and verified for a 7-level asymmetric MLI, using simulation results and a hardware implementation.