• Title/Summary/Keyword: Load flow analysis

Search Result 876, Processing Time 0.037 seconds

Analysis of Large Power System by Small Digital Computer (소형 digital computer를 이용한 대전력계통의 해석)

  • 박영문;정재길
    • 전기의세계
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 1974
  • This paper attempts to develop the algorithms and computer program for load flow solution and faults analysis of large power system by small digital computer. The Conventional methods for load flow solution and fault analysis of large power system require too much amount of computer memory space and computing time. Therefore, this paper describes the methad for reducing the computer memory space and computing time as follows. (1) Load Flow Solution; This method is to store each primitive impedance of lines along with a list of bus numbers corresponding to the both terminals of lines, and to store only nonzero element of bus admittance matrix. (2) Faults Analysis: This method is to partition a large power system into several groups of subsystems, form individual bus impedance matrix, store them in the storage, and assemble the only required portion of them to original total system by algorithm.

  • PDF

A Framework for Determining Minimum Load Shedding for Restoring Solvability Using Outage Parameterization

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.73-78
    • /
    • 2004
  • This paper proposes a framework for determining the minimum load shedding for restoring solvability. The framework includes a continuation power flow (CPF) and an optimal power flow (OPF). The CPF parameterizes a specified outage from a set of multiple contingencies causing unsolvable cases, and it traces the path of solutions with respect to the parameter variation. At the nose point of the path, sensitivity analysis is performed in order to achieve the most effective control location for load shedding. Using the control location information, the OPF for locating the minimum load shedding is executed in order to restore power flow solvability. It is highlighted that the framework systematically determines control locations and the proper amount of load shedding. In a numerical simulation, an illustrative example of the proposed framework is shown by applying it to the New England 39 bus system.

Influence Analysis of Temporal Continuity Change of Flow Data on Load Duration Curve (유량자료의 시간적 연속성 변화가 오염부하지속곡선에 미치는 영향 비교 분석)

  • Kwon, Pil Ju;Han, Jeong Ho;Ryu, Ji chul;Kim, Hong Tae;Lim, Kyoung Jae;Kim, Jong Gun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.394-402
    • /
    • 2017
  • In korea, TMDL is being implemented to manage nonpoint pollution sources as well as point pollution sources. LDC is being used for the planning of TMDL. In order to analyze the water quality using LDC, it is necessary to prepare FDC using the daily flow data. However, only the daily flow data is measured at the WAMIS branch, and 8days flow data and water quality data are measured at the monitoring Networks. So, in many researches, the water quality is being grasped by deriving the LDC using the 8days flow or the daily flow obtained by various methods. These fluctuations may lead to differences in determining whether the target load is achieved. In this study, each LDC was prepared using the 8day flow and the related daily flow. Then, the effect using different flow data on the achievement of target load was compared according to flow conditions. As a result, the difference ratio in the number of overloads under flow condition was showed 19% in high flows, 42% in moist conditions, 49% in mid-range flows, 41% in dry conditions, and 104% in low flows. In the top ten watershed with the highest difference ratio, the flow became lower the difference ration increases. These differences can cause uncertainty in assessing the achievement of target load using LDC. Therefore, in order to evaluate the water quality accurately and reliably using LDC, accurate daily flow data and water quality data should be secured through the installation of national nonpoint measurement network.

A Study on Finding of Simplified Multiple Load Flow Solutions and Evaluating of Voltage Stability (간략조류계산법과 전압안정도 평가예 관한 연구)

  • Song, Kil-Young;Kim, Sae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.556-558
    • /
    • 1995
  • This paper presents a new simplified method for finding the multiple load flow solutions and through their solutions the voltage stability can be evaluated. Line flow($P_{ij}$, $Q_{ij}$) may be formulated with the second-order equations for $V_{i}^{2}$ in polar coordinates or two circle equations for $e_{i}$ and $f_{i}$ in rectangular coordinates. Based on this feature, multiple load flow solutions are calculated with simple works, results of multiple load flow solutions are used for sensitivity analysis of voltage stability. Also, in the case that reactive power sources is considered, method of evaluating the voltage stability is introduced. The proposed method was validated to 2-bus and IEEE 6-bus system.

  • PDF

Northeast Asia Interconnection, and Power Flow Analysis Considering Seasonal Load Patterns

  • Lee, Sang-Seung;Kim, Yu-Chang;Park, Jong-Keun;Lee, Seung-Hun;Osawa, Masaharu;Moon, Seung-Il;Yoon, Yong-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This paper presents the effects of an increase or a decrease of a power reserve by load flow calculations under the seasonal load patterns of each country for the future power shortages faced by the metropolitan areas or by the southeastern area of South Korea in North-East Asia. In this paper, the various cases of the power system interconnections in Far-East Asia are presented, and the resulting interconnected power systems are simulated by means of a power flow analysis performed with the PSS/E 28 version tool. Data for simulation were obtained from the 2-th long term plan of electricity supply and demand in KEPCO. The power flow map is drawn from simulated data and the comparative study is done. In the future, a power flow analysis will be considered to reflect the effects of seasonal power exchanges. And the plan of assumed scenarios will be considered with maximum or minimum power exchanges during summer or winter in North-East Asian countries.

DEVELOPMENT OF A NEW LOAD FLOW TECHNIQUE CONSIDERING FREQUENCY AND CONTINGENCY ANALYSIS USING SENSITIVITY (주파수를 고려한 전력 조류 계산 및 감도에 의한 상정사고 해석)

  • Park, Young-Moon;Son, Myoung-Ki;Choo, Jin-Boo;Yoon, Yong-Beom;Lee, Kyung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.201-204
    • /
    • 1992
  • In the conventional load flow technique, it is assumed that the generator at the slack bus is used to supply the transmission losses and the change of power due to the generator outage. The assumption is not true in physical sense. This paper presents a new load flow technique that considers the governor-frequency characteristics and load-frequency characteristics and the technique is consistent with the actual power system phenomenon. This paper proposes an efficient methodology using sensitivity with the new technique for contingency analysis, which is used to calculate the line flows. Computational results of this technique applied to IEEE 14-bus system are presented.

  • PDF

A Study on Power System Analysis Considering Special-days Load Mobility of Electric Vehicle (특수일 이동을 고려한 전기자동차 충전부하의 전력계통 영향에 관한 연구)

  • Hwang, Sung-Wook;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.253-256
    • /
    • 2016
  • In this paper, the power system with electric vehicles is analyzed considering the mobility and diffusion rate of electric vehicles in the smart grid environment. In the previous studies, load modeling and load composition rates have been researched and the results are applied to develop a new load model to explain the mobility of electric vehicles which could affect on the power system status such as power flow and stability. The results would be utilized to research and develop power system analysis methods considering movable charging characteristics of electric vehicles including movable discharging characteristics which could be affected by the diffusion progress of electric vehicles.

Inverse Analysis Approach to Flow Stress Evaluation by Small Punch Test (소형펀치 시험과 역해석에 의한 재료의 유동응력 결정)

  • Cheon, Jin-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1753-1762
    • /
    • 2000
  • An inverse method is presented to obtain material's flow properties by using small punch test. This procedure employs, as the objective function of inverse analysis, the balance of measured load-di splacement response and calculated one during deformation. In order to guarantee convergence to global minimum, simulated annealing method was adopted to optimize the current objective function. In addition, artificial neural network was used to predict the load-displacement response under given material parameters which is the most time consuming and limits applications of global optimization methods to these kinds of problems. By implementing the simulated annealing for optimization along with calculating load-displacement curve by neural network, material parameters were identified irrespective of initial values within very short time for simulated test data. We also tested the present method for error-containing experimental data and showed that the flow properties of material were well predicted.

Performance Analysis and Test of the Small Piezoelectric-Hydraulic Pump Brake System (소형 압전유압펌프 브레이크 시스템의 성능해석 및 실험)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Nguyen, Anh Phuc;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.49-56
    • /
    • 2018
  • In this paper, the performance analysis and the experiment of the brake system using the small piezoelectric-hydraulic pump were performed. Initially, the 3-D modeling of the brake load components was performed for the construction of the brake system. Subsequently, modeling using the commercial program AMESim was performed. A floating caliper model was used as a load for modeling the brake system. Through the AMESim simulation, load pressure, check valve displacement and flow rate under no load state were calculated, and performance analysis and changes in dynamic characteristics were confirmed by adding brake load. A jig for use in fixing the brake load during performance test was manufactured. The flow rate was assessed under no load condition and load pressure formation experiments were performed and compared with simulation results. Experimental results revealed the maximum load pressure as about 73bar at 130Hz and the maximum flow rate as about 203cc/min at 145Hz, which satisfied the requirement of small- and medium-sized UAV braking system. In addition, simulation results revealed that the load pressure and discharge flow rate were within 6% and 5%, respectively. Apparently, the modeling is expected to be effective for brake performance analysis.

Analysis of the Difference of Flow Duration Curve according to the Cumulative Variation of the Daily Average Flow in Unit Watershed for TPLCs (총량관리 단위유역 일평균유량의 시계열 누적 변화에 따른 유량지속곡선 차이 분석)

  • Hwang, Ha-sun;Rhee, Han-pil;Seo, Ji-yeon;Choi, Yu-jin;Park, Ji- hyung;Shin, Dong-seok;Lee, Sung-jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.97-109
    • /
    • 2018
  • The LDC (Load Duration Curve) method can analyze river water quality changes according to flow rate and seasonal conditions. It is also possible to visually recognize whether the target water quality is exceeded or the size of the reduction load. For this reason, it is used for the optimal reduction of TPLCs and analysis of the cause of water pollution. At this time, the flow duration curve should be representative of the water body hydrologic curve, but if not, the uncertainty of the interpretation becomes big because the damaged flow condition is changed. The purpose of this study is to estimate the daily mean flow of the unit watershed using the HSPF model and to analyze the difference of the flow duration curves according to the cumulative daily mean flow rate using the NSE technique. The results show that it is desirable to construct the flow duration curve by using the daily average flow rate of at least 5 years although there is a difference by unit watershed. However, this is the result of the water bodies at the end of Han River basin watershed, so further study on various water bodies will be necessary in the future.