• 제목/요약/키워드: Load experiment

검색결과 2,221건 처리시간 0.028초

박용 디젤기관의 캠-밸브기구 하중특성 (The Chacteristics of Load on the Cam-Valve Mechanism for the Marine Diesel Engine)

  • 조민현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.778-784
    • /
    • 1999
  • In this study both the experimental and the analytic approach to find load characteristics on the cam-valve mechanism for matrine diesel engine were demonstrated. The experiment was per-formed with a test rig consisted of real engine components for cam-valve mechanism of overhead valve type. The 9-degree of freedom lumped mass model was developed to simulate cam-valve motion throughly. Behavior of the load acting on the cam-valve mechanism was estimated for the various cam speed. The load variation was getting deeper with the higher cam speed and the jumping of the follower was shown both in the experiment and in the simulation.

  • PDF

하중흐름을 통한 대형구조실험용 반력시설물의 설계 (Design Approach of Large-scale Experimental Facilities Reflect the Load Flow)

  • 이성은;고동우
    • 한국공간구조학회논문집
    • /
    • 제16권2호
    • /
    • pp.69-77
    • /
    • 2016
  • The purpose of this study is to present a method that can estimate the height of reaction facilities for large structural experiment through load flow as primary design procedure. The characteristic of the load transmission according to the type of experiment was analyzed to obtain tensile and compressive forces occurring on the reaction facilities. Strong walls that are affected by the bending moment is applied the post-tensioning method, and the strong floor under the control of the tension and compression is designed in accordance with the load flow. And the optimum cross-section of the reaction facilities was obtained by comparing the stresses of the tensile stress and crack the concrete. Through validating elastic analysis, the design results were satisfied a given design conditions.

자동변속기용 드럼클러치의 유동제어 성형공정 및 실험장치 개발 연구 (A Study on the Flow Control Forming Process and Experiment Device of Drum Clutch for Automatic Transmission)

  • 박종남
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.69-76
    • /
    • 2013
  • This paper presents the development of the FCF method for the manufacturing of final products using numbers related to the minimum amount of work. The utilized product is a drum clutch, which is part of the transmission of an automobile. A double acting press is secured first and a prediction of the forming load on the practical material is made through an experiment with a plasticine model. Also, a finite element simulation using product shape and properties is performed, as well as a press experiment. A double acting press is manufactured that is suitable for a double acting experiment with a conventional hydraulic press(200 tons). A peripheral device for the press is additionally designed for experimental purposes. And, the press has as its essential points the drive speed, stroke control, etc., all of which influence the forming and is modified. Especially, a laser system is used for velocity measurement of two punches. The forming load of a practical material is predicted in order to derive a forming load formula for cold conditions on the basis of approximate similarity theory. Finite element analysis of the relative velocity ratio(RVR), etc., for most suitable flow defect(unfilling, etc.) prevention is achieved as well. The results are verified through a press experiment.

풍동용 3 축 로드셀의 구조최적설계 (Optimum Structural Design of a Triaxial Load Cell for Wind Tunnel Test)

  • 이재훈;송창곤;박성훈
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.226-232
    • /
    • 2011
  • In this study, an optimized design of a triaxial load cell has been developed by the use of finite element analysis, design of experiment and response surface method. The developed optimal design was further validated by both stress-strain analysis and natural vibration analysis under an applied load of 30 kgf. When vertical, horizontal, and axial loads of 30 kgf were applied to the load cell with the optimal design, the calculated strains were satisfied with the required strain range of $500{\times}10^{-6}{\pm}10%$. The natural vibration analysis exhibited that the fundamental natural frequency of the optimally designed load cell was 5.56 kHz and higher enough than a maximum frequency of 0.17 kHz which can be applied to the load cell for wind-tunnel tests. The satisfactory sensitivity in all triaxial directions also suggests that the currently proposed design of the triaxial load cell enables accurate measurements of the multi-axial forces in wind-tunnel tests.

전통목구조 시스템의 도리방향 골조의 횡저항 성능에 대한 실험 (Experiment of Lateral Load Resistance of Dori-Directional Frame in Traditional Wood Structure System)

  • 이영욱;홍성걸;김남희;정성진;황종국;배병선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.241-246
    • /
    • 2007
  • The capacity of a lateral load resistance of a joint with Jangbu-connection of Dori-directional frame in traditional wood structure system was studied, through experiments of 1/2 scaled and T-shaped 7 subassemblies of joint of Dori-directional frame for Deawoongjeon of Bongjungsa. From the experiment, it was shown that the capacity of a lateral load resistance was influenced by the vertical load confining joint and not influenced by the number of Chok and the depth of Changbang, And lateral load resistance mechanism is developed by the restraint between the vertical load and the contacting edge of column; if structure is pushed to the left, the top-right end of Pyeongju contacts with Changbang and left Changbang loses the contacts with Pyeongju and therefore only right Changbang can resist to lateral load.

  • PDF

시험공간에 강제환기를 고려한 냉방부하의 실증실험 및 시뮬레이션 (Verification Experiment and Simulation of Cooling Load for a Test Space with Forced Ventilation)

  • 김동혁;유호선;홍희기
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.217-222
    • /
    • 2005
  • Building energy consumption according to the ventilation has been considered to be an important subject. The purpose of this study is to investigate the cooling loads in a test space with a forced ventilating system. In the test space, on/off controlled air-conditioning and forced ventilating facility were operated between 8:30 to 21:00 during 4 days and some important data like temperatures and energy consumption were measured to obtain actual cooling loads. The simulation was carried out in a mode of temperature level control using a TRNSYS 15.3 with a precisely measured air change amount and performance data of air-conditioner. Cooling loads including sensible and latent were compared between by experiment and by simulation. Both of cooling loads associated with ventilation show a close agreement within an engineering tolerance.

  • PDF

Identification of acrosswind load effects on tall slender structures

  • Jae-Seung Hwang;Dae-Kun Kwon;Jungtae Noh;Ahsan Kareem
    • Wind and Structures
    • /
    • 제36권4호
    • /
    • pp.221-236
    • /
    • 2023
  • The lateral component of turbulence and the vortices shed in the wake of a structure result in introducing dynamic wind load in the acrosswind direction and the resulting level of motion is typically larger than the corresponding alongwind motion for a dynamically sensitive structure. The underlying source mechanisms of the acrosswind load may be classified into motion-induced, buffeting, and Strouhal components. This study proposes a frequency domain framework to decompose the overall load into these components based on output-only measurements from wind tunnel experiments or full-scale measurements. First, the total acrosswind load is identified based on measured acceleration response by solving the inverse problem using the Kalman filter technique. The decomposition of the combined load is then performed by modeling each load component in terms of a Bayesian filtering scheme. More specifically, the decomposition and the estimation of the model parameters are accomplished using the unscented Kalman filter in the frequency domain. An aeroelastic wind tunnel experiment involving a tall circular cylinder was carried out for the validation of the proposed framework. The contribution of each load component to the acrosswind response is assessed by re-analyzing the system with the decomposed components. Through comparison of the measured and the re-analyzed response, it is demonstrated that the proposed framework effectively decomposes the total acrosswind load into components and sheds light on the overall underlying mechanism of the acrosswind load and attendant structural response. The delineation of these load components and their subsequent modeling and control may become increasingly important as tall slender buildings of the prismatic cross-section that are highly sensitive to the acrosswind load effects are increasingly being built in major metropolises.

Experimental determination of the buckling load of rectangular plates using vibration correlation technique

  • Singhatanadgid, Pairod;Sukajit, Padol
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.331-349
    • /
    • 2011
  • This study investigates the use of a vibration correlation technique (VCT) to identify the buckling load of a rectangular thin plate. It is proposed that the buckling load can be determined experimentally using the natural frequencies of plates under tensile loading. A set of rectangular plates was tested for natural frequencies using an impact test method. Aluminum and stainless steel specimens with CCCC, CCCF and CFCF boundary conditions were included in the experiment. The measured buckling load was determined from the plot of the square of a measured natural frequency versus an in-plane load. The buckling loads from the measured vibration data match the numerical solutions very well. For specimens with well-defined boundary conditions, the average percentage difference between buckling loads from VCT and numerical solutions is -0.18% with a standard deviation of 5.05%. The proposed technique using vibration data in the tensile loading region has proven to be an accurate and reliable method which might be used to identify the buckling load of plates. Unlike other static methods, this correlation approach does not require drawing lines in the pre-buckling and post-buckling regions; thus, bias in data interpretation is avoided.

22.9[kV] 모선의 계절별 부하특성에 관한 연구 (A Study on the Seasonal Load Characteristics in 22.9[kV] Bus)

  • 이종필;임재윤;지평식;김기동;김정훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권6호
    • /
    • pp.279-286
    • /
    • 2001
  • A load modeling, micro method, is performed by component load modeling, load composition rate estimation and aggregation of component load model, etc. The load model obtained from this process must be applied to actual load bus to verify it and to get reliable load model. But it is difficult to apply every load bus due to al lot of load buses and complex experiment. This paper proposed the field test method in load bus to verify the load modeling. For appropriate field test, representative load buses are selected by the proposed algorithm considering the composition rate of user category in all load buses. The field tests were performed at selected load buses to obtain load characteristics of bus by time and seasonal without blackout. The results of measurement and analysis are presented in detail.

  • PDF

협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석 (Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots)

  • 김재은;장길상;임국화
    • 대한안전경영과학회지
    • /
    • 제23권4호
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.