• Title/Summary/Keyword: Load evaluation

Search Result 3,629, Processing Time 0.037 seconds

Manufacture and Evaluation of Small Size PEMFC Stack Using Carbon Composite Bipolar Plate (탄소복합소재 분리판을 이용한 소형 고분자전해질 연료전지 스택 제작 및 성능분석)

  • Han, C.;Choi, M.;Lee, J.J.;Lee, J.Y.;Kim, I.T.;An, J.C.;Shim, J.;Lee, H.K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.81-88
    • /
    • 2010
  • Small size polymer electrolyte membrane fuel cell (PEMFC) stacks were prepared using carbon composite and graphite bipolar plates and their performances were evaluated on reactant gas and operating time. In comparison to single cell and stack, it was identified that home-made bipolar plate was well-designed to maximize stack performance as high as that of single cell. During long-term operation, the performances of stacks using two different kinds of bipolar plates were compared. The decrease of performance in both stacks was accelerated with increasing load current. It was observed from stack test that the stack performance using carbon composite bipolar plate was very similar to that using graphite bipolar plate.

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario (폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Cho, Chul-Min;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.673-683
    • /
    • 2016
  • In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.

Safety Evaluation of Concert Hall Floor Vibration Using Numerical Analysis Model (수치해석모델을 이용한 콘서트 홀 바닥진동 안전성 평가)

  • Roh, Ji-Eun;Heo, Seok-Jae;Moon, Dae-Ho;Lee, Sang-Hyun;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.469-477
    • /
    • 2017
  • In this paper, the floor vibration of an example concert hall building was measured and floor safety criteria were analytically checked through comparison between experimental and analytical results. The floor bottom plate model was constructed considering the composite effect and the analytical model was modified to have the natural frequency identical to the measured one. Also, time history analysis was conducted using the dynamic loads induced by human rhythmic movement during a musical performance, and the analytically calculated floor accelerations were similar to the measured one. Based on this model, the floor vibration level due to the group activities of about 400 persons, maximum available persons for the concert hall, was estimated. It was confirmed that the human induced dynamic loads applied to the column and beam would be much lower than the design strength. In addition, the horizontal acceleration level is just 2% of the design seismic load, so the concert hall is safe in both vertical and horizontal excitations by human rhythmic movements.

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 지진거동 평가)

  • Ko, Hyun;Kim, Hyun-Su;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.13-22
    • /
    • 2010
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

The Effects of Coordinated Upper-limb Postures of Back, Shoulder, and Elbow Flexion Angles on the Subjective Discomfort Rating, Heart Rate, and Muscle Activities

  • Kong, Yong-Ku;Lee, Soo-Jin;Lee, Kyung-Suk;Seo, Min-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.695-703
    • /
    • 2011
  • Objective: This study was to investigate the effects of coordinated upper-limb body postures on the subjective discomfort rating, heart rate, and muscle activities. Background: Although generally many checklists such as OWAS, RULA, and REBA were applied to evaluate various body postures, the body postures were might be overestimated or underestimated because each body part(i.e., back, shoulder, and elbow etc.) was evaluated separately, and then added all rates of individual body parts to assess an overall risk level for the body posture in these methodologies. Methods: A total of 20 participants maintained 14 postures which were combinations of back, shoulder, and elbow flexion angles and then muscle activities, subjective discomfort, and heart rates were collected every three minute during a sustained 15 minute and 0.5kg weight holding task. Four muscle groups were investigated: erector spine, anterior deltoid, upper trapezius, triceps brachii. Results: Results showed that subjective discomfort was the lowest when the angle of back and shoulder were both $0^{\circ}s$, while the body posture with $45^{\circ}$ of back angle and $45^{\circ}$ shoulder angle was rated as the most subjective discomfort posture. In general, the subjective discomfort ratings increased as back and shoulder flexion angles increased. It was noted that, however, the subjective discomfort of body posture with a $45^{\circ}$ back angle and $45^{\circ}$ shoulder flexion angle was lower than that of body posture with a $0^{\circ}$ back and $45^{\circ}$ shoulder flexion angle. The research findings of heart rates and muscle activities showed similar results for the analyses of subjective discomfort ratings. Conclusions: The possible limitations of the current ergonomics evaluation techniques which assessing a body posture with summing all body part score after individually analyzed in this study. Based on the analyses of subjective discomfort, heart rate, and muscle activities, it was recommended that a use of effects of coordinated upper-limb body postures would be considered when one evaluates work-load for various working postures. Application: These findings can be used for developing a more accurate assessment checklist for working posture as well as preventing musculoskeletal disorders of workers in workplaces.

A Study of Thermo-Mechanical Analysis for the Design of High Pressure Piping System for Natural Gas Fuel Vessel (천연가스 연료선박의 고압 이중 배관 설계를 위한 열-구조 해석에 관한 연구)

  • Park, Seong-Bo;Sim, Myung-Ji;Kim, Myung-Soo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • LNG (liquefied natural gas) is considered the best alternative eco-fuel, and many studies on the LNG fuel system have been performed to use LNG as the fuel for ships. For the LNG fuel supply system, natural gas transfers from the vaporizer to the engine in the gaseous state with a temperature of $50^{\circ}C$ and a pressure of 35MPa. Therefore, a structural safety evaluation of the double-walled pipelines considering thermal load is essential. In this article, an uniaxial tensile test for super duplex stainless steel, material for double-walled pipe, according to the annealing time was carried out to analyze the thermal effect. In addition, thermo-structural analysis of the high temperature-high pressure double-walled pipe with fixed supports that are now used widely was carried out to evaluate the structural safety. To minimize stress concentration of the connection point between the support and inner pipe, the shapes of the new type support that can slip through inner pipe were proposed, and the supports which has best structural performance was selected using the results from the thermo-structural analyses of new supports and an analysis of the whole double-walled pipeline was performed to ensure structural safety. These results can be used as a database for the design of double-walled pipelines and sliding support.

Effects of Powder and Concentrates of Prnus mume on the Quality of Doenjang During Fermentation (매실분말 및 농축액 첨가가 된장의 숙성중 품질에 미치는 영향)

  • Park, Woo-Po;Kim, Nam-Dae;Lee, Seung-Chul;Kim, Sung-Yong;Cho, Sung-Hwan
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.574-580
    • /
    • 2006
  • Different amounts of powder and concentrate (0.5% and 1.0%) of Prnus mume were added to doenjang and were examined during fermentation at $20^{\circ}C$. Moisture and amino nitrogen content were gradually increased, regardless of the amount of powder and concentrate of Prnus mume (PCP). A rapid increase in moisture and amino nitrogen was shown at initial 2 week of fermentation. Control showed a higher amino nitrogen content and microbial load (yeast and mold) than samples with PCP. Reducing sugar content was rapidly decreased after 2 weeks, but was plateaued after 4 weeks. Color (L, a and b) of doenjang had the highest value at 4 weeks, but was decreased thereafter. Weter extracts from samples with PCP were lower in radical scavenging activity than that of control, but methanol extracts and ethanol extracts were generally higher than that of control. Based on On sensory evaluation of doenjang after 6 weeks, control 1 was better than other treatments in color, aroma and taste. Significant difference was not observed among control 1, control 2 and samples with 0.5% PCP.

Changes of Characteristics in Kochujang Fermented with Maesil (Prunus mume) Powder or Concentrate (매실분말 및 농축액을 첨가한 고추장의 숙성중 품질 변화)

  • Park, Woo-Po;Cho, Sung-Hwan;Lee, Seung-Chul;Kim, Sung-Yong
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.378-384
    • /
    • 2007
  • Powder, or a concentrate, of maesil (Prunus mume) were used in the making of kochujang, and were added to kochujang at 0.5 or 1.0% (w/w). Kochujang fermented with maesil powder lower moisture content than did samples fermented with maesil concentrate. Moisture content slowly increased during fermentation, and was $3{\sim}4%$ higher than the initial value after 8 weeks of fermentation. Kochujang fermented with maesil powder or maesil concentrate showed lower pH values and higher total acidities than did the control. The total microbial count was $3.6{\times}10^7\;5.4{\times}10^7\;cfu/g$, and yeast and mold levels were $2.0{\times}10^7{\sim}3.6{\times}10^7\;cfu/g$, as kochujang fermentation commenced. Microbial load reached a maximum by 4 weeks of fermentation, and decreased thereafter. L (lightness), a (redness) and b (yellowness) values of kochujang gradually decreased during fermentation. Compared to methanol extracts of kochujang, water extracts and ethanol extracts showed higher free radical scavenging abilities at the initial stage of fermentation. Control, and samples with 0.5% (w/w) maesil powder or maesil concentrate, attained higher scores in sensory evaluation tests than did samples with higher maesil levels, and were not significantly different at P>0.05 as determined by Duncan's multiple range test.

GMPLS based Functional Models and Connection Admission Control Algorithms for Optical Burst Switched Networks (광 버스트 교환 망을 위한 GMPLS 기반 기능 모델과 연결 수락 제어 알고리즘)

  • So, Won-Ho;Roh, Sun-Sik;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9B
    • /
    • pp.778-790
    • /
    • 2004
  • In this paper, we propose the functional models of optical burst switching (OBS) routers to apply GMPLS (Generalized Multiprotocol Label Switching) to optical networks based on OBS. In addition, we introduce a connection admission control (CAC) algorithms which are operated in this models and can accommodate the required QoS. Firstly, the characteristics of current GMPLS and OBS for the optical Internet are basically considered. With this consideration, the models are proposed to accept OBS features which include the recognition of data bounda η with control information and the statistical multiplexing in terms of bursts. Secondly, we use an offset time decision (OTD) algorithm on behalf of controlling the connection admission with taking QoS parameters such as burst loss rate(BLR) and service-differentiation ratio(SDR) into consideration. The proposed CAC algorithms use the offered load of LSP (Label Switched Path), wavelength information, and QoS parame ‘ ers as inputs of OTD algorithm. A call setup request will be accepted when the offset time decided by OTD algorithm is reasonable for guaranteeing its requested QoS. Simulation is used for performance evaluation Results show the proposed schemes can guarantee the required QoS and those are better than the previous one in terms of channel utilization.

Drop reliability evaluation of Sn-3.0Ag-0.5Cu solder joint with OSP and ENIG surface finishes (OSP.ENIG 표면 처리된 기판과 Sn-3.0Ag-0.5Cu 솔더 접합부의 낙하충격 신뢰성 평가)

  • Ha, Sang-Ok;Ha, Sang-Su;Lee, Jong-Bum;Yoon, Jeong-Won;Park, Jai-Hyun;Chu, Yong-Chul;Lee, Jun-Hee;Kim, Sung-Jin;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The use of portable devices has created the need for new reliability criterion of drop impact tests because of the tendency to accidentally drop in the use of these devices. The effects of different PCB surface finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) and high temperature storage (HTS) test on the drop reliability were studied. Various drop test conditions were used to evaluate a drop reliability of assemblies to endure such impact and shock load. In the case of the as-reflowed samples (no HTS test), the SAC/OSP boards exhibited a better drop impact reliability than that of SAC/ENIG. However, the reverse was true if HTS test is performed. In addition, significant decrease of drop reliability was observed for both SAC/ENIG and SAC/OSP assemblies after HTS test. It was also observed that the thickness of intermetallic compound layer do play an important role in the brittle fracture of drop test.

  • PDF