DOI QR코드

DOI QR Code

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls

비내력벽을 가진 RC모멘트저항골조의 지진거동 평가

  • 고현 ((주)아이스트 설계4본부) ;
  • 김현수 (선문대학교 건축학부) ;
  • 박용구 (성균관대학교 건설환경시스템공학과) ;
  • 이동근 (성균관대학교 건축공학과)
  • Received : 2010.01.20
  • Accepted : 2010.08.16
  • Published : 2010.10.31

Abstract

Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

철근콘크리트 건축물에서 비내력벽(Masonry Infill Walls)은 내부 칸막이벽이나 중저층 규모의 건물 외벽에 흔히 사용된다. 그렇지만 대부분의 경우에 비내력벽은 비구조체이므로 구조설계시 건물의 모형화에서 무시된다. 따라서 본 연구에서는 비내력벽을 보편화된 모형화 방법인 등가의 대각 압축 스트럿(Equivalent Diagonal Strut)으로 고려하여 비내력벽의 유무에 따른 저층 철근콘크리트 건축물의 전체적인 지진거동의 양상을 평가하고자 하였다. 해석결과로 비내력벽을 고려하면 시스템의 추가적인 강도 및 강성을 확보하여 층간변위비를 줄일 수 있으나 진동주기가 짧아져서 설계단계에서 고려한 지진하중보다 큰 하중을 받게 된다. 연약층이 있는 모델의 경우에는 기둥에 소성거동이 집중됨을 알 수 있으며 부분적인 붕괴가 전체 시스템의 붕괴 원인의 가능성을 가진다.

Keywords

References

  1. Fiorato, A.E., Sozen, M.A., and Gamble, W.L., An investigation of the interaction of reinforced concrete frames with masonry filler walls, Report UILU-ENG-70-100, Department of Civil Engineering, University of Illinois, Urbana-Champaign IL, USA, 1970.
  2. Klingner, R.E., and Bertero, V.V., Infilled frames in earthquake -resistant construction, Report EERC/76-32, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA, 1976.
  3. Bertero, V.V., and Brokken, S., “Infills in seismic resistant building,” Journal of Structural Engineering (ASCE), Vol. 109, No. 6, 1337-1361, 1983. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:6(1337)
  4. Zarnic, R., and Tomazevic, M., “Study of the behaviour of masonry infilled reinforced concrete frames subjected to seismic loading,” Proceedings of the 7th International Conference on Brick Masonry, Australia, 1315-1325, 1985.
  5. Schmidt, T., “Experiments on the nonlinear behaviour of masonry infilled reinforced concrete frames,” Annual Journal on Concrete and Concrete Structures. 185-194, 1989.
  6. Mehrabi, A.B., Shing, P.B., Schuller, M.P., and Noland, J.L., Performance of masonry-infilled r/c frames under in-plane lateral loads, Report CU/SR-94-6, Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder CO, USA, 1994.
  7. Mehrabi, A.B., Shing, P.B., Schuller, M.P., and Noland, J.L., “Experimental evaluation of masonry-infilled rc frames,” Journal of Structural Engineering (ASCE), Vol. 122, No. 3, 228-237, 1996. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(228)
  8. 최호, “무보강 콘크리트 블록채움벽을 갖는 RC 프레임의 정적가력실험,” 대한건축학회, 제 23권, 제 4호, 71-78, 2007.
  9. Mehrabi, A.B., and Shing, P.B., “Behaviour and analysis of masonry-infilled frames,” Prog. Struct. Engng Mater, No. 4, 320-331, 2002.
  10. Stafford Smith, B., “Lateral stiffness of infilled frames,” Journal of the Structural Division (ASCE), Vol. 88, No. 6, 183-199, 1962.
  11. International Conference of Building Official, Uniform Building Code, UBC-97, ICBO, Whittier, California, 1997.
  12. Prakash, V., Powell, G.H., and Campbell, S., DRAIN-2DX, Static and Dynamic Analysis of Plane Structure, NISEE, Earthquake Engineering Research Center, University of California, Berkeley, 1993.
  13. Dolsek, M., and Fajfar, P., “Mathematical modelling of an infilled RC frame structure based on the results of pseudodynamic tests,” Earthquake Engng Struct. Dyn, No. 31, 1215-1230, 2002. https://doi.org/10.1002/eqe.154
  14. 김희철, 김관중, 박진호, 홍원기, “지진하중을 고려한 비보강 조적조의 재료특성 평가에 관한 실험연구,” 한국지진공학회, 제 5권, 제 2호, 93-101, 2001.
  15. FEMA-356, Prestandard and Commentary for The Seismic Rehavilitation of Buildings, Federal Emergency Management Agency, 2000.
  16. Lee, D.G., Song, J.K., and Yun, C.B., “Estimation of system-level ductility demands for multi-story Structures,” Engineering Structures, Vol. 19, No. 12, 1025-1035, 1996. https://doi.org/10.1016/S0141-0296(97)00010-2

Cited by

  1. A Comparison Study of Equivalent Strut Models for Seismic Performance Evaluation of Masonry-Infilled Frame vol.18, pp.2, 2014, https://doi.org/10.5000/EESK.2014.18.2.079