• Title/Summary/Keyword: Load density

Search Result 1,072, Processing Time 0.032 seconds

Surface effects on vibration and buckling behavior of embedded nanoarches

  • Ebrahimi, Farzad;Daman, Mohsen;Fardshad, Ramin Ebrahimi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The present paper deals with the free vibration and buckling problem with consideration of surface properties of circular nanobeams and nanoarches. The Gurtin-Murdach theory is used for investigating the surface effects parameters including surface tension, surface density and surface elasticity. Both linear and nonlinear elastic foundation effect are considered on the circular curved nanobeam. The analytically Navier solution is employed to solve the governing equations. It is obviously detected that the natural frequencies of a curved nanobeams is substantially influenced by the elastic foundations. Besides, it is revealed that by increasing the thickness of curved nanobeam, the influence of surface properties and elastic foundations reduce to vanished, and the natural frequency and critical buckling load turns into to the corresponding classical values.

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

LLC Resonant Converter with Hold-up Time Extension Technique for Computer Power Supply

  • Choi, Seong-Wook;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.228-230
    • /
    • 2008
  • A LLC resonant converter with hold-up time extension technique for computer power supply is proposed. Since the proposed circuit has a current boost-up capability of resonant inductor regardless of the input voltage level and the load power condition, operating near the resonant frequency, it can provide the power to the load as the input voltage drops to half of reflected output voltage to the transformer primary. This extends the hold-up time of computer power supply and improves the system power density and conversion efficiency at nominal input voltage. The experimental results with prototype are given to confirm the validity of the proposed circuit.

  • PDF

A Study on the Characteristics of BiCMOS and CMOS Inverters (BiCMOS 및 CMOS로 구현된 Inverter에 대한 특성비교)

  • 정종척;이계훈;우영신;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.93-96
    • /
    • 1993
  • BiCMOS technology, which combines CMOS and bipolar technology, offers the possibility of achieving both very high density and high performance. In this paper, the characteristics of BiCMOS and CMOS circuits, especilly the delay time is studied. BiCMOS inverter, which has high drive ability because of bipolar transistor, drives high load capacitance and has low-power characteristics because the current flows only during switching transient just like the CMOS gate. BiCMOS inverter has the less dependence on load capacitance than CMOS inverter. SPICE that has been used for electronic circuit analysis is chosen to simulate these circuits and the characteristics is discussed.

  • PDF

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.289-292
    • /
    • 2008
  • Highly over-expanded nozzle of the rocket engines will be excited by non-axial forces due to flow separation at sea level operations. Since rocket engines are designed to produce axial thrust to power the vehicle, non-axial static and/or dynamic forces are not desirable. Several engine failures were attributed to the side loads. Present work investigate the unsteady flow in an over-expanded rocket nozzle in order to estimate side load during a shutdown/starting. Numerical computations has been carried out with density based solver on multi-block structured grid. Present solver is explicit in time and unsteady time step is calculated using dual time step approach. AUSMDV is considered as a numerical scheme for the flux calculations. One equation Spalart-Allmaras turbulence model is selected. Results presented here is for two nozzle pressure ratio i.e. 100 and 20. At 100 NPR, restricted shock separation (RSS) pattern is observed while, 20 NPR shows free shock separation (FSS) pattern. Side load is observed during the transition of separation pattern at different NPR.

  • PDF

Alumina Ceramics Reinforced by Ni-coated Chopped Alumina Fiber

  • Kim, Hai-Doo;Lee, Kyu-Hwan
    • The Korean Journal of Ceramics
    • /
    • v.7 no.2
    • /
    • pp.74-79
    • /
    • 2001
  • Alumina composite reinforced by chopped alumina fiber was fabricated by filter-pressing the fiber slurry followed by the infiltration of alumina slurry. The chopped fiber was coated with nickel by electroless plating method. The green samples were densified by hot-pressing. Microstructures were studied by SEM and the mechanical properties such as bending strength and fracture toughness were measured. The resulting mechanical properties were analyzed in relation with processing parameters such as preform density and resulting microstructures. The load-displacement curve of the specimen with Ni interlayer but without Ni inclusion showed brittle fracture mode due to the direct contact between matrix and fiber. The load-displacement curve of the specimen with Ni interlayer and Ni inclusion in the matrix which is introduced by high applied pressure during specimen preparation showed non-brittle fracture mode due to the fiber pull-out and dutile phases in the matrix.

  • PDF

A Measurement of Adhesion Energy between Viscoelastic/Elastic, Viscoelastic/Viscoelastic Materials Using Contact Mechanics Approach (접촉 역학적 접근에 의한 점탄성/탄성, 점탄성/점탄성 재료간의 접합 에너지 측정)

  • Lee, C.;Earmme, Y.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1030-1035
    • /
    • 2003
  • The nanoimprint lithography technology makes higher density of semiconductor device and larger capacity of storage media. In this technology the induced damage while detaching polymer pattern from mold should be minimized. In order to analyze the problem, the basic knowledge of adhesion between the polymer and the mold is required. In this study a contact experiment of polyisobutylene specimen with spherical steel tip and polyisobutylene bead tip was conducted using nano indenter. During the contact experiment with various loading rate under load control the contact behavior of viscoelastic material was measured, i.e., the load and displacement between the tip and the specimen were measured. The data was analyzed by HBK model to obtain the stress intensity factor of contact edge and the contact radius as a function of time. Also the adhesion energies between steel/polyisobutylene and polyisobutylene/polyisobutylene were obtained employing the analysis of the crack of viscoelastic material by Schapery.

  • PDF

Probabilistic Analysis of Flaw Distribution on Structure Under Cyclic Load (피로하중을 받는 구조물의 결함분포에 대한 확률론적 해석)

  • Kwak, Sang-Log;Choi, Young-Hwan;Kim, Hho-Jung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.604-609
    • /
    • 2003
  • Flaw geometries, applied stress, and material properties are major input variables for the fracture mechanics analysis. Probabilistic approach can be applied for the consideration of uncertainties within these input variables. But probabilistic analysis requires many assumptions due to the lack of initial flaw distributions data. In this study correlations are examined between initial flaw distributions and in-service flaw distributions on structures under cyclic load. For the analysis, LEFM theories and Monte Carlo simulation are applied. Result shows that in-service flaw distributions are determined by initial flaw distributions rather than fatigue crack growth rate. So initial flaw distribution can be derived from in-service flaw distributions.

  • PDF

Numerical studies of steel-concrete-steel sandwich walls with J-hook connectors subjected to axial loads

  • Huang, Zhenyu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.461-477
    • /
    • 2016
  • Steel-concrete-steel (SCS) sandwich composite wall has been proposed for building and offshore constructions. An ultra-lightweight cement composite with density1380 kg/m3 and compressive strength up to 60 MPa is used as core material and inter-locking J-hook connectors are welded on the steel face plates to achieve the composite action. This paper presents the numerical models using nonlinear finite element analysis to investigate the load displacement behavior of SCS sandwich walls subjected to axial compression. The results obtained from finite element analysis are verified against the test results to establish its accuracy in predicting load-displacement curves, maximum resistance and failure modes of the sandwich walls. The studies show that the inter-locking J-hook connectors are subjected to tension force due to the lateral expansion of cement composite core under compression. This signifies the important role of the interlocking effect of J-hook connectors in preventing tensile separation of the steel face plates so that the local buckling of steel face plates is prevented.

Effect of Base Roughness of Footing on Settlement Characteristics of Footing (기초저면의 조도가 기초의 침하 특성에 미치는 영향)

  • Yoo, Nam-Jae;Kim, Young-Gil;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.15-23
    • /
    • 1992
  • This research is to investigate the effect of base roughness of footing on characteristics of load-settlement curve. Parametric experiments of small scaled model test were performed with changing the properties of base roughness of model footing; Gluing the vinyl, aluminum, sand paper, sand beneath the model footing surface. The width of model footing and relative density of soil foundation were also changed to investigate their effects on settlement characteristics of footing. The ultimate bearing capacity as well as the initial slope of load-settlement curve obtained from test results were compared with those from limit equilibrium methods proposed by Terzaghi, Hansen and Meyerhof. From test results, it was confirmed that the base roughness affected the failure mechanisms of showing different shapes of slip lines formed beneath the footing.

  • PDF