• Title/Summary/Keyword: Load case

Search Result 3,587, Processing Time 0.03 seconds

Analysis of Failure Behavior of Piles Embedded in Liquefied Soil Deposits (액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Cho, Chong-Suck;Han, Jin-Tae;Hwang, Jae-Ik;Park, Young-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.123-131
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. Several cases of pile failures were reported despite the fact that a large margin of safety factor was employed in their design. In this study, 1-g shaking table tests were performed in order to analyze the failure behavior of piles embedded in liquefied soil deposits by buckling instability. As a result, it can be concluded that the pile subjected to excessive axial loads $(near\;P_{cr})$ can fail easily by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, it was found that lateral loading due to lateral spreading increased lateral deflection of pile and reduced the buckling load. In addition, from the buckling shape of pile, difference between Euler's buckling and pile buckling vat observed. In the case of pile buckling, hinge formed at the middle point of the pile, not at the bottom. And in sloping grounds, location of hinge formation got lower compared with level ground because of the soil movements.

Effect of Latent Heat Material Placement on Inside Temperature Uniformity of Insulated Transfer Boxes (단열용기의 잠열재 배치에 따른 내부 온도 균일성에 대한 영향)

  • HyungYong Ji;Dong-Yeol Chung;Seuk Cheun Choi;Joeng-Yeol Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • An optimized design of the transportation insulated box must be considered to control the thermal damage in order to maintain the fresh condition for temperature-sensitive medicine and frozen food safety. The inside temperature of the insulated box is a natural convection enclosure state, thermal stratification naturally occurs as time passes in case of with outside heat load. The latent heat material (LHM) placement inside the box maintains the target temperature of the product for temperature fluctuations during transport, and LHM application is a common and efficient method. In this work, inside temperature stratification in an insulated box depending on the LHM pack position is numerically simulated and experimented. The insulated box is made up of vacuum insulation panel (VIP), and LHM modules are placed over six faces inside the box, with the same weight. The temperature curves for 72 hrs as experiment results clearly show the temperature stratification in the upper, middle, and lower at the LHM melting time region. However, the temperature stratification state is uniformly changed in accordance with the condition of the upper and lower placement weight of the LHM pack. And also, the temperature uniformity by changed placement weight of LHM has an effect on maintaining time for target air temperature inside the box. These results provide information on the optimized design of the insulated box with LHM.

Experiments for Pressure Drop of Scrubbing Layer in a Scrubber System (스크러버 내 충진층에서의 압력강하 특성에 관한 실험적 연구)

  • Yong-Shik Han;Kyu Hyung Do;Kyungyul Chung;Byungil Choi;Hwalong You;Changhyun Kim;Minchang Kim;Taehoon Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.186-192
    • /
    • 2023
  • According to the regulation on the pollution of the marine environment, SOx emission from ships has to be reduced. A SOx scrubbing system installed in a funnel of a ship is considered in order to reduce SOx emission. A scrubbing layer with a porous material is present in the funnel to increase the contact area between exhaust gas and water. In this study, experiments on the pressure drop characteristics in the scrubbing layer are conducted to investigate the effect of the scrubber on the engine load. The pressure drop according to flow rate of air instead of exhaust gas was measured for fillers such as sphere, pall ring and saddle in the scrubbing layer. First of all, porosity is experimentally measured for the three types of filler and it is confirmed that the porosity of the saddle-type filler was the largest. The pressure drop according to the change in air flow rate was measured for the three types of fillers in the scrubbing layer. As a result, the pressure drop was the smallest in the scrubbing layer with the saddle-type filler which has the largest porosity. In addition, the effect of spraying water flowing counter flow against air flow is experimentally examined. It is known that the pressure drop is increased because the air flow space is reduced when water is sprayed. In the case of the saddle, the pressure drop is about 1.5 to 2 times greater than that when only air flows at the optimum exhaust gas-water injection ratio.

A Temperature Predicting Method for Thermal Behaviour Analysis of Curved Steel Box Girder Bridges (곡선 강박스거더교의 온도거동 분석을 위한 온도분포 예측기법에 관한 연구)

  • Cho, Kwang-Il;Won, Jeong-Hun;Kim, Sang-Hyo;Lu, Yung-Chien
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.105-113
    • /
    • 2008
  • Solar radiation induces non-uniform temperature distribution in the bridge structure depending on the shape of the structure and shadows cast on it. Especially in the case of curved steel box girder bridges, non-uniform temperature distribution caused by solar radiation may lead to unusual load effects enough to damage the support or even topple the whole curved bridge structure if not designed properly. At present, it is very difficult to design bridges in relation to solar radiation because it is not known exactly how varying temperature distribution affects bridges; at least not specific enough for adoption in design. Standard regulations related to this matter are likewise not complete. In this study, the thermal behavior of curved steel box girder bridges is analyzed while taking the solar radiation effect into consideration. For the analysis, a method of predicting the 3-dimensional temperature distribution of curved bridges was developed. It uses a theoretical solar radiation energy equation together with a commercial FEM program. The behavior of the curved steel box girder bridges was examined using the developed method, while taking into consideration the diverse range of bridge azimuth angles and radii. This study also provides reference data for the thermal design of curved steel box girder bridges under solar radiation, which can be used to develop design guidelines.

Strength Prediction of PSC Box Girder Diaphragms Using 3-Dimensional Grid Strut-Tie Model Approach (3차원 격자 스트럿-타이 모델 방법을 이용한 PSC 박스거더 격벽부의 강도예측)

  • Park, Jung Woong;Kim, Tae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.841-848
    • /
    • 2006
  • There is a complex variation of stress in PSC anchorage zones and box girder diaphragms because of large concentrated load by prestress. According to the AASHTO LFRD design code, three-dimensional effects due to concentrated jacking loads shall be investigated using three-dimensional analysis procedures or may be approximated by considering separate submodels for two or more planes. In this case, the interaction of the submodels should be considered, and the model loads and results should be consistent. However, box girder diaphragms are 3-dimensional disturbed region which requires a fully three-dimensional model, and two-dimensional models are not satisfactory to model the flow of forces in diaphragms. In this study, the strengths of the prestressed box girder diaphragms are predicted using the 3-dimensional grid strut-tie model approach, which were tested to failure in University of Texas. According to the analysis results, the 3-dimensional strut-tie model approach can be possibly applied to the analysis and design of PSC box girder anchorage zones as a reasonable computer-aided approach with satisfied accuracy.

An Analysis of Hydrological and Ecological Characteristics of River Wetlands -Case Study of Wangjin District in Geumgang River- (하천습지의 수문생태적 특성 분석 -금강 왕진지구를 사례로-)

  • SeungWon Hong;MiOk Park;BonHak Koo
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.315-325
    • /
    • 2023
  • This study analyzed the disturbance process of river wetlands based on modern and contemporary maps and aerial photographs, and analyzed land cover and NDVI changes in the hydro-ecological impact zone around the Wangjin District. A stable sandbar was formed near Wangjinnaru and was naturally connected to the agricultural land within inland, but after the sandbar and river wetland were destroyed due to heavy floods, embankment construction, land readjustment, and comprehensive river management, artificial replaced wetlands and ecological parks were created, and sandbars in the form of river island were restored again. The change in land cover in the hydro-ecological impact zone showed that rice paddies and fields in agricultural areas decreased from 36.3% in 2013 to 22.9% in 2022, with the largest change in area to 814,476m2. It was confirmed that the land cover was undergoing vegetation over time. Since the vegetation condition is good, a healthy food chain is formed in the waterfront ecosystem, which can be expected to be biodiversity-positive. Summarizing seasonal changes in the vegetation index, the overall change in the vegetation index was the largest in spring (March), followed by summer (June), and the change in autumn (September) was the smallest except for water. By land use, the overall vegetation index (NDVI) increased, including 39.1% improvement in alternative wetlands, 38.2% improvement in load, 44.3% improvement in ecological parks, 35.6% improvement in agricultural areas, and -8.1% decrease in water.

Generalization of an Evaluation Formula for Bearing Pressures on the Rubble Mound of Gravity-Based Harbor Structures (중력식 항만구조물의 사석마운드 지반반력 평가식의 일반화)

  • Woo-Sun Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.128-137
    • /
    • 2023
  • In this study, the bearing pressure on the rubble mound of a gravity-based harbor structure with an arbitrarily shaped bottom was targeted. Assuming that the bottom of the structure is a rigid body, the rubble mound was modeled as a linear spring uniformly distributed on the bottom that resists compression only, and the bearing pressure evaluation formula was derived. It was confirmed that there were no errors in the derivation process by showing that when the bottom was square, the derived equation was converted to the equation used in the design. In addition, the validity of the derived equation was proven by examining the behavior and convergence value of the bearing pressure when an arbitrarily shaped bottom converges into a square one. In order to examine the adequacy of the method used in the current design, the end bearing pressure for the pre-designed breakwater cross-section was calculated and compared with the values in the design document. As a result, it was shown that the method used for design was not appropriate as it gave unsafe results. In particular, the difference was larger when the eccentricity of the vertical load was large, such as in the case of extreme design conditions.

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.

Current Pediatric Endoscopy Training Situation in the Asia-Pacific Region: A Collaborative Survey by the Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology and Nutrition Endoscopy Scientific Subcommittee

  • Nuthapong Ukarapol;Narumon Tanatip;Ajay Sharma;Maribel Vitug-Sales;Robert Nicholas Lopez;Rohan Malik;Ruey Terng Ng;Shuichiro Umetsu;Songpon Getsuwan;Tak Yau Stephen Lui;Yao-Jong Yang;Yeoun Joo Lee;Katsuhiro Arai;Kyung Mo Kim; APPSPGHAN Endoscopy Scientific Subcommittee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.4
    • /
    • pp.258-265
    • /
    • 2024
  • Purpose: To date, there is no region-specific guideline for pediatric endoscopy training. This study aimed to illustrate the current status of pediatric endoscopy training in Asia-Pacific region and identify opportunities for improvement. Methods: A cross-sectional survey, using a standardized electronic questionnaire, was conducted among medical schools in the Asia-Pacific region in January 2024. Results: A total of 57 medical centers in 12 countries offering formal Pediatric Gastroenterology training programs participated in this regional survey. More than 75% of the centers had an average case load of <10 cases per week for both diagnostic and therapeutic endoscopies. Only 36% of the study programs employed competency-based outcomes for program development, whereas nearly half (48%) used volume-based curricula. Foreign body retrieval, polypectomy, percutaneous endoscopic gastrostomy, and esophageal variceal hemostasis, that is, sclerotherapy or band ligation (endoscopic variceal sclerotherapy and endoscopic variceal ligation), comprised the top four priorities that the trainees should acquire in the autonomous stage (unconscious) of competence. Regarding the learning environment, only 31.5% provided formal hands-on workshops/simulation training. The direct observation of procedural skills was the most commonly used assessment method. The application of a quality assurance (QA) system in both educational and patient care (Pediatric Endoscopy Quality Improvement Network) aspects was present in only 28% and 17% of the centers, respectively. Conclusion: Compared with Western academic societies, the limited availability of cases remains a major concern. To close this gap, simulation and adult endoscopy training are essential. The implementation of reliable and valid assessment tools and QA systems can lead to significant development in future programs.

Development of an intelligent IIoT platform for stable data collection (안정적 데이터 수집을 위한 지능형 IIoT 플랫폼 개발)

  • Woojin Cho;Hyungah Lee;Dongju Kim;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.687-692
    • /
    • 2024
  • The energy crisis is emerging as a serious problem around the world. In the case of Korea, there is great interest in energy efficiency research related to industrial complexes, which use more than 53% of total energy and account for more than 45% of greenhouse gas emissions in Korea. One of the studies is a study on saving energy through sharing facilities between factories using the same utility in an industrial complex called a virtual energy network plant and through transactions between energy producing and demand factories. In such energy-saving research, data collection is very important because there are various uses for data, such as analysis and prediction. However, existing systems had several shortcomings in reliably collecting time series data. In this study, we propose an intelligent IIoT platform to improve it. The intelligent IIoT platform includes a preprocessing system to identify abnormal data and process it in a timely manner, classifies abnormal and missing data, and presents interpolation techniques to maintain stable time series data. Additionally, time series data collection is streamlined through database optimization. This paper contributes to increasing data usability in the industrial environment through stable data collection and rapid problem response, and contributes to reducing the burden of data collection and optimizing monitoring load by introducing a variety of chatbot notification systems.