DOI QR코드

DOI QR Code

Generalization of an Evaluation Formula for Bearing Pressures on the Rubble Mound of Gravity-Based Harbor Structures

중력식 항만구조물의 사석마운드 지반반력 평가식의 일반화

  • Woo-Sun Park (Ocean Space Development & Energy Research Department, Korea Institute of Ocean Science and Technology)
  • 박우선 (한국해양과학기술원 해양공간개발.에너지연구부)
  • Received : 2023.12.07
  • Accepted : 2023.12.20
  • Published : 2023.12.31

Abstract

In this study, the bearing pressure on the rubble mound of a gravity-based harbor structure with an arbitrarily shaped bottom was targeted. Assuming that the bottom of the structure is a rigid body, the rubble mound was modeled as a linear spring uniformly distributed on the bottom that resists compression only, and the bearing pressure evaluation formula was derived. It was confirmed that there were no errors in the derivation process by showing that when the bottom was square, the derived equation was converted to the equation used in the design. In addition, the validity of the derived equation was proven by examining the behavior and convergence value of the bearing pressure when an arbitrarily shaped bottom converges into a square one. In order to examine the adequacy of the method used in the current design, the end bearing pressure for the pre-designed breakwater cross-section was calculated and compared with the values in the design document. As a result, it was shown that the method used for design was not appropriate as it gave unsafe results. In particular, the difference was larger when the eccentricity of the vertical load was large, such as in the case of extreme design conditions.

본 연구는 비정형 바닥판을 갖는 중력식 구조물의 사석마운드 지반반력을 대상으로 하였다. 구조물 바닥을 강체로 가정하고, 사석마운드는 압축에 대해서만 저항하는 바닥에 균일하게 분포하는 선형스프링으로 모형화하여 지반반력 산정식을 유도하였다. 바닥 형상이 사각형인 경우, 그 유도된 식이 설계에 사용되고 있는 식으로 변환됨을 보임으로써 유도 과정에 오류가 없음을 확인하였다. 또한, 비정형 바닥 형상이 사각형으로 수렴할 때의 지반반력의 거동과 그 수렴값을 살펴봄으로써 유도된 식의 타당성을 입증하였다. 실제 설계에서 사용되고 있는 방법의 적정성을 살펴보기 위하여 기 설계된 방파제 단면에 대한 단부 지반반력을 계산하고 설계서에 제시된 값과 비교하였다. 그 결과, 설계에 사용한 방법이 비안전측의 결과를 주었다는 것을 확인하였다. 특히, 극한 설계조건의 경우와 같이 연직하중의 편심이 큰 경우에 그 차이가 더 크게 나타났다.

Keywords

Acknowledgement

본 연구는 한국해양과학기술원의 적립금사업 "쇄석기둥 체결형 콘크리트 블록 공법 성능평가(PKA0045)"와 주요사업 "해양에너지 및 항만·해양구조물 고도화 기술개발(PEA0131)"의 지원을 받아 수행되었습니다.

References

  1. Czerniak, E. (1964). How to calculate footing soil bearing by computer. Hydrocarbon Processing, 43.
  2. Goda, Y. (2010). Random seas and design of maritime structures, 3rd ed., Advanced Series on Ocean Engineering-Volume 33, World Scientific.
  3. GS Construction Co. Consortium, (2022). Basic design report for constructing berthing facilities of the Saemangeum new port. GS Construction Co. Consortium (in Korean).
  4. Huang, H.W., Zhou, T., Mehta, N., Sawab, J. and Mo, Y.L. (2019). An analytical and design solution for arbitrary shape rigid spread footings subjected to biaxial loading. Procds. of the 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Taipei, Taiwan.
  5. MOF (2023). KC CODE KDS 64 14 20 : 2023. https://kpcs.portcals.go.kr/kc/selectKcDtlVw.do.
  6. Park, W.-S. and Lee, B.W. (2020). Consideration on ways to reduce a edge pressure at bottom plate of caisson breakwaters. Journal of Korean Society of Coastal and Ocean Engineers, 32(5), 331-339 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.5.331
  7. Park, W.-S., Seo, J. and Lee, B.W. (2022). A way to evaluate maximum edge bearing pressures of open cell caissons. Proceeding of Joint Conference of the Korean Association of Ocean Science and Technology Societies, Jeju ICC, 104 (in Korean).
  8. Park, W.-S., Seo, J., Won, D. and Lee, B.W. (2018). Stability assessment formulas for an interlocking caisson breakwater under oblique wave conditions. Journal of Coastal Research, 85(sp1), 1236-1240. https://doi.org/10.2112/SI85-248.1
  9. Park, W.-S., Won, D., Seo, J. and Lee, B.W. (2020). Proposal of rotating stability assessment formula for an interlocking caisson breakwater subjected to wave forces. Journal of Korean Society of Coastal and Ocean Engineers, 32(1), 11-16 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.1.11
  10. Park, W.-S., Jang, S.-C. and Gwon, C.-H. (2023). Evaluation of end bearing capacity of a block-typed structure with crushed stone columns by model experiments. Proceeding of Joint Conference of the Korean Association of Ocean Science and Technology Societies, Busan BEXCO, 75 (in Korean).
  11. Rodriguez-Gutierrez, J.A. and Aristizabal-Ochoa, J.D. (2013a). Rigid spread footings resting on soil subjected to axial load and biaxial bending, I: Simplified analytical method. Int. Journal of Geomechanics, 10.1061/(ASCE) GM. 1943-5622.0000218, 13, 109-119.
  12. Rodriguez-Gutierrez, J.A. and Aristizabal-Ochoa, J.D. (2013b). Rigid spread footings resting on soil subjected to axial load and biaxial bending, II: Design aids. Int. Journal of Geomechanics, 10.1061/(ASCE) GM. 1943-5622.0000210, 13, 120-131.
  13. Wilson, K.E. (1997). Bearing pressures for rectangular footings with biaxial uplift. Journal of Bridge Engineering, 2(1), 27-33. https://doi.org/10.1061/(ASCE)1084-0702(1997)2:1(27)