• Title/Summary/Keyword: Load Position

Search Result 1,122, Processing Time 0.027 seconds

A Study on the Optical Emission Spectroscopy of the RF Inductive Plasma Process (RF 유도형 플라즈마 프로세스에 대한 분광학적 연구)

  • Jang, Mun-Gug;Han, Sang-Bo;Park, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.103-112
    • /
    • 2011
  • This paper is tried to analysis the optical emission spectroscopy related to the position of inductive load coil and flow rates of methane and oxygen in the RF inductive plasma process. According to the position of load coil, peak of $H_{\alpha}$, $H_{\beta}$, and CH were appeared strongly at the middle position of the coil and it decreased both direction. The electron temperature was approximately 0.9[eV] at that position. Emission intensities of $H_{\alpha}$, $H_{\beta}$, and CH increased linearly by increasing input power. In addition, intensities of $H_{\alpha}$ and $H_{\beta}$ increased by increasing the flow rate of oxygen. It might be ascribed that the oxygen species were bonded with $C_nH_m$ by suppressing the combination with hydrogen atoms. Consequently, the optimal position of the inductive coil is decided to the intermediate position between 4th and 5th turns, the wanted carbon thin-film is possible to deposit by controlling flow rates of methane and oxygen.

An Experimental Research of Servo Valve Offset Correction Method of Hydraulic Actuator (유압식 구동장치의 서보밸브 오프셋 보정 방법에 관한 실험적 연구)

  • Ban, Joon Hyeok
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.72-79
    • /
    • 2019
  • Despite the development of electronic components and microprocessors, hydraulic actuators are still being applied in various applications. In some applications, there is a desire to apply a hydraulic actuator with a relatively small position error to the system. Various studies have been conducted to reduce the position error of hydraulic actuators. In this paper, the position error of the hydraulic actuator when the hydraulic oil pressure is supplied is defined as the offset generated by the servo valve, and the method for correcting the servo valve offset has been studied. A method for compensating the servo valve offset was proposed and it was verified through experiments that the position error of the hydraulic actuator was reduced. We also compared the servo valve offset correction method and controller using the PID control and disturbance observer used to reduce the position error of the hydraulic actuator. No-load test and load test were performed to confirm the performance of the servo valve offset correction method. The results of the study were compared with those obtained by using the disturbance observer and PID control.

Precision Position Control of PMSM using Load Torque Observer and Parameter Compensator (외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀위치 제어)

  • 고종선;이태훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • This paper presents a new method of external load disturbance compensation using deadbeat load torque observer and gain compensation by parameter estimator. The response of the permanent magnet synchronous motor(PMSM) follows the nominal plant. The load torque compensation method is composed of a deadbeat observer. To reduce the noise effect, the post-filter implemented by moving average(MA) process is adopted. The parameter compensator with recursive least square method(RLSM) parameter estimator is suggested to make the new system work as same as the name plate system which in used to take gains. The proposed estimator is combined with a high performance load torque observer to resolve the problems. As a result, the proposed control system has a robust and precise system against the load torque and the parameter variation. A stability and usefulness are verified by computer simulation and experiment.

Precision Position Control of PMSM using Neural Observer and Parameter Compensator

  • Ko, Jong-Sun;Seo, Young-Ger;Kim, Hyun-Sik
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents neural load torque compensation method which is composed of a deadbeat load torque observer and gains compensation by a parameter estimator. As a result, the response of the PMSM (permanent magnet synchronous motor) obtains better precision position control. To reduce the noise effect, the post-filter is implemented by a MA (moving average) process. The parameter compensator with an RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural load torque observer to resolve problems. The neural network is trained in online phases and it is composed by a feed forward recall and error back-propagation training. During normal operation, the input-output response is sampled and the weighting value is trained multi-times by the error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against load torque and parameter variation. Stability and usefulness are verified by computer simulation and experiment.

Stress Distribution Analysis of Jointed Concrete Pavements (줄눈콘크리트포장의 하중응력분포 해석)

  • Park, Je-Seon;Lee, Joo-Hyung;Kim, Tea-Kyung;Yun, Kyung-Ku
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.363-370
    • /
    • 1998
  • This study focused on the development of an alternative stress estimation procedure to instantly calculate the critical stresses bonded concrete pavement. Closed form analysis is commonly used to analyze pavement structures. This type of analysis assumes linearelastic material properties and static loading conditions. The well-known ILLI-SLAB finite element program was used for the analysis. Bonded concrete overlay analyzed the stress distribution, behavior and load carrying capacity under track load is made evaluation standard of bonded concrete overlay. In the study, the following results were derived ; The properties of strength is that compress and 3-point bending strength of existing pavement is deteriorated with $184kg/cm^2$, $59kg/cm^2$ but compress and splitting tensile strength of overlay is satisfied with $465kg/cm^2$, $45kg/cm^2$. Load transfers is happen at adjacent slab by interlocking under track load. The stress distribution under interior, corner and edge load is described high loading position surrounding then loading position.

  • PDF

Study of Load According to the Position of Sling Strap during Sling Bridge Exercises for Improvement of Life Care (라이프케어 증진을 위한 슬링교각운동 시 슬링스트렙 위치에 따른 부하량 연구)

  • Moon, Ok-Kon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.365-370
    • /
    • 2020
  • The purpose of this study was to accurately measure the load generated on the leg according to the position of the sling strap supporting the leg during the sling bridge exercise for improvement of life care. Ten Healthy university students participated in two trials: knee bridge exercise and ankle bridge exercise in supine position. The loads transmitted to the knees and ankles were measured when a bridge exercise was performed with a sling strap on both knees and ankles. As a result of the study, it was confirmed that the load of sling bridge exercise with both knees supported was statistically greater than the load of sling bridge exercise with both ankles supported(p<.01). On the other hand, there was no statistically significant difference in the load between both knees and both ankles (p>.05). Therefore this study is meaningful in that it objectively measured the load on the leg during sling bridge exercise, and is thought to be helpful in setting exercise intensity during sling exercise.

Experimental investigation of shear connector behaviour in composite beams with metal decking

  • Qureshi, Jawed;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.475-494
    • /
    • 2020
  • Presented are experimental results from 24 full-scale push test specimens to study the behaviour of composite beams with trapezoidal profiled sheeting laid transverse to the beam axis. The tests use a single-sided horizontal push test setup and are divided into two series. First series contained shear loading only and the second had normal load besides shear load. Four parameters are studied: the effect of wire mesh position and number of its layers, placing a reinforcing bar at the bottom flange of the deck, normal load and its position, and shear stud layout. The results indicate that positioning mesh on top of the deck flange or 30 mm from top of the concrete slab does not affect the stud's strength and ductility. Thus, existing industry practice of locating the mesh at a nominal cover from top of the concrete slab and Eurocode 4 requirement of placing mesh 30 mm below the stud's head are both acceptable. Double mesh layer resulted in 17% increase in stud strength for push tests with single stud per rib. Placing a T16 bar at the bottom of the deck rib did not affect shear stud behaviour. The normal load resulted in 40% and 23% increase in stud strength for single and double studs per rib. Use of studs only in the middle three ribs out of five increased the strength by 23% compared to the layout with studs in first four ribs. Eurocode 4 and Johnson and Yuan equations predicted well the stud strength for single stud/rib tests without normal load, with estimations within 10% of the characteristic experimental load. These equations highly under-estimated the stud capacity, by about 40-50%, for tests with normal load. AISC 360-16 generally over-estimated the stud capacity, except for single stud/rib push tests with normal load. Nellinger equations precisely predicted the stud resistance for push tests with normal load, with ratio of experimental over predicted load as 0.99 and coefficient of variation of about 8%. But, Nellinger method over-estimated the stud capacity by about 20% in push tests with single studs without normal load.

Effects of Trunk Twist on Postural Sway During Manually Handling Flat Ties (플렛타이 인력물자취급서 몸통 비틀기에 따른 신체자세 동요에 대한 연구)

  • Kim, Sung-Won;Park, Sung-Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.38-44
    • /
    • 2010
  • We investigated the effects of trunk twist on postural stability during manually handling flat ties. Ten male subjects participated in this study. While handling 5kgf and 10kgf bundles of flat ties respectively, their centers of pressure (COPs) were measured under two levels of body position (twisted and fixed), two levels of direction (left and right), and three levels of object position ($30^{\circ}$, $45^{\circ}$, and $60^{\circ}$). Subjects' postural stability was quantified by calculating the sway length. Results showed that the effect of different object position was significant on postural sway length in subject's medio-lateral axis. Post-hoc multiple comparions revealed that, under the 5kgf load condition, the sway length was increased significantly as the object position increased to $45^{\circ}$. Under the 10kgf load condition, however, the sway length was increased significantly at the object position of $60^{\circ}$. Actual or potential applications of this research include guidelines for the design of working posture evaluation techniques.

Development of controller for anti-swing and position of crane (크레인의 Anti-Swing 및 위치 제어기의 개발)

  • 정승현;권판조;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.277-281
    • /
    • 1996
  • The roof crane system is used for transporting a variable load to a target position. At this time, the goal of crane system is transporting to a goal position as soon as possible with no rope oscillation. Generally crane is operated by expert's knowledge, but recently automatic control with high speed and rapid transportation is required. In this thesis we developed fuzzy controller of crane which has simplified expert's knowledge base for anti-swing and rapid tansportation to goal position.

  • PDF

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.