• Title/Summary/Keyword: Lithology

Search Result 163, Processing Time 0.026 seconds

Predictive Flooded Area Susceptibility and Verification Using GIS and Frequency Ratio (빈도비 모델과 GIS을 이용한 침수 취약 지역 예측 기법 개발 및 검증)

  • Lee, Moung-Jin;Kang, Jung-Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.86-102
    • /
    • 2012
  • For predictive flooded area susceptibility mapping, this study applied and verified probability model and the frequency ratio using a geographic information system (GIS) and frequency raio. Flooded areas were identified in the study area of field surveys, For predictive flooded area susceptibility mapping, this study applied and verified probability model and the frequency ratio using a geographic information system (GIS) and frequency raio. Flooded areas were identified in the study area of field surveys, and maps of the topography, geology, landcover and green infrastructure were constructed for a spatial database. The factors that influence flooded areas occurrence, such as slope gradient, slope, aspect and curvature of topography and distance from darinage, were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. The frequency ratio coefficient is overlaid for flooded areas susceptibility mapping as each factor's ratings. Then the flooded areas susceptibility map was verified and compared using the existing flooded areas. As the verification results, the frequency ratio model showed 82% in prediction accuracy. The method can be used to reduce hazards associated with flooded areas and to plan land use.

Characteristics of the Copper Mineralization in Tsogttsetsii Area, Mongolia (몽골 촉트체치 지역의 동 광화작용 특성)

  • Davaasuren, Otgon-Erdene;Lee, Bum Han;Kim, In Joon;Ryoo, Chung-Ryul;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Tsogttsetsii area, an intrusive complex associated with Cu porphyry mineralization, is located in the Gurvansaikhan island arc terrane of the Central Asian Orogenic belt, Southern Mongolia. We performed a reconnaissance survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Permian. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and Scanning electron microscopy-Energy dispersive spectroscopy (SEM-EDS). Ore minerals identified in polarizing microscope are magnetite, pyrite and bornite. Propylitic alteration zone occurs broadly in the area where malachite occurrences are shown to be spread intensively in alkali granite area. Quartz, sericite, chlorite and epidote were observed in the alteration zone samples. As results of XRD and SEM-EDS analysis, samples of copper oxides were composed mainly of malachite, cuprite and small amounts of quartz. Average and maximum Cu contents of samples collected from malachite occurrences area are 759 ppm and 6190 ppm, respectively. The characteristics of mineralization in Tsogttsetsii area is similar to Oyu Tolgoi Cu-Au (Mo) deposit and Tsagaan Suvarga Cu-Mo deposit which are 56 km south and 120 km northeast from Tsogttsetsii area, respectively. Characteristics of the study area, such as the geology, tectonic environment, lithology, mineralization, and alterations of the rocks within the survey area, resemble the characteristics of other porphyry deposits. Therefore further exploration including Induced Polarization (IP) survey for identifying subsurface orebody is required.

The Stratigraphy and Geologic Structure of the Metamorphic Complex in the Northwestern Area of the Kyonggi Massif (경기육괴서북부(京畿陸塊西北部)의 변성암복합체(變成岩複合體)의 층서(層序)와 지질구조(地質構造))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.6 no.4
    • /
    • pp.201-216
    • /
    • 1973
  • Being believed thus far to be distributed in the wide areas in the vicinity of Seoul, the capital city of Korea, the Yonchon System in its type locality in Yonchon-gun from which the name derived was never previously traced down or correlated to the Precambrian metamorphic complex in Seoul area where the present study was carried out. Due to in accessibility to Yonchon area, the writer also could not trace the system down to the area studied so as to correlate them. The present study endeavored to differentiate general stratigraphy and interprete the structure of the metamorphic complex in the area. In spite of the complexity of structure and rapid changes in lithofacies of the complex, it was succeeded to find out the key bed by which the stratigraphy and structure of the area could be straightened out. The keybeds were the Buchon limestone bed in the western parts of the area; Daisongri quartzite bed cropped out in the southeastern area; Jangrak quartzite bed scattered in the several localities in the northwest, southwest, and eastern parts of the area; and Earn quartzite bed isolated in the eastern part of the area. These keybeds together with the broad regional structure made it possible to differentiated the Precambrian rocks in ascending order into the Kyonggi metamorphic complex, Jangrak group and Chunsung group which are in clinounconformable relation, and the first complex were again separated in ascending order into Buchon, Sihung, and Yangpyong metermorphic groups. Althcugh it has being vaguely called as the Yonchon system thus far, the Kyonggi metamorphic complex have never been studied before. The complex might, however, belong to early to early-middle Precambrian age. The Jangrak and Chunsung group were correlated to the Sangwon system in North Korea by the writer (1972), but it became apparent that the rocks of the groups have different lithology and highly metamorphosd than those of the Sangwon system which has thick sequence of limestone and slightly metamorphosed. Being deposited in the margin of the basin, it is natural that the groups poccess terrestrial sediments rather than limestone, yet no explanation is at hand as to what was the cause of bringing such difference in grade of metamorphism. Thus the writer attempted to correlate the both groups to those of pre-Sangwon and post-Yonchon which might be middle to early-late Precambrian time. Judging from difference in grade of deformation and unconformity between the Kyonggi metamorphic complex, Jangrak group, and Chunsung group, three stages of orogeny were established: the Kyonggi, Jangrak orogenies, and Chunsung disturbance toward younger age. It is rather astonishing to point out that the structure of these Precambrian formations. was not effected by Daebo orogeny of Jurassic age. The post-tectonic block faulting was accompanied by these orogenies, and in consequence NNE and N-S trending faults were originated. These faulting were intermittented and repeated until Daebo orogeny at which granites intruded along these faults. The manifestation of alignment of these faults is indicated by the parallel and straight linear development of valleys and streams in the Kyonggi Massifland.

  • PDF

Petrochemistry of the Granitic Rocks in the Chungju, Wolaksan and Jecheon Granite Batholiths (충주(忠州)-월악산(月岳山)-제천(提川) 화강암류(花崗岩類)의 암석화학적(岩石化學的) 연구(硏究))

  • Kim, Kyu Han;Shin, Yun Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.245-259
    • /
    • 1990
  • Petrochemical analyses of granitic rocks including trace element, REE and oxygen isotope were carried out to understand petrogenesis of plutonic rocks from the Chungju, Wolaksan and Jecheon granite batholiths, which might be related with tungsten-base metal-fluorite mineralization in the Hwanggangri metallogenic province. Different geochemical characteristics such as major and trace elements were found between Jurassic Daebo granitic rocks (Chungju, Jecheon, Wonju, and Boeun granitic rocks) and Cretaceous Bulgugsa granitic rocks (Wolaksan, Muamsa and Sokrisan granitic rocks). Cretaceous granitoids are characterized by high $SiO_2$and $K_2O$ contents and low $TiO_2$, $Al_2O_3$, MgO and CaO contents. They also have relatively high contents of trace elements(Zn, V, Co, Cr, Sr, and Ba) in comparison with the Jurassic granitoids. (Eu)/($Eu^*$) and $(La/Lu)_{CN}$ ratios of Jurassic plutons vary from 0.78 to 1.13 and from 26.02 to 30.5, respectively, while the ratios of Cretaceous ones range from 0.22 to 0.28 and from 4.42 to 14.2, respectively. The REE patterns of the Cretaceous and Jurassic granitic rocks have quite different Eu anomalies: large negative Eu anomaly in the former, and mild or absent Eu anomaly in the latter. The large Eu negative of Cretaceous granitic rocks are interpreted as a differentiated product of fractional crystallization of granitic magma deduced by Rayleigh fractionation model(Tsusue et al., 1987). Oxygen isotopic compositions of quartz for Daebo and Bulgugsa granitic rocks range from 9.98 to 10.51‰ and from 8.26 to 9.56‰, respectively. The Daebo granitic rocks enriched in $^{18}0$ suggest that the magma be undergone different partial melting processes from the Bulgugsa ones. Of the Bulgugsa granitoids, Wolaksan and Sokrisan mass have different contents of trace elements and ${\delta}\;^{18}0$ values of the silicate minerals, which indicate that they are not from the identical source of magma. Many mineral deposits are distributed in and/or near the Wolaksan and Muamsa granitic rocks, but a few mineral deposits are found in and near the Chungju and Jecheon granite batholiths. It might be depend on geochemisty of the related igneous rocks which have low contents of Ba, Sr, Co, V, Cr, Ni, Zn and high contents of Nb and Y, and on lithology of country rocks such as cabonate and noncarbonate rocks.

  • PDF

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

Environmental Characteristics of Groundwater for Sedimetary Rocks in Daegu City (대구시 퇴적암 분포 지역의 지하수에 대한 환경지화학적 특성)

  • 이인호;조병욱;이병대
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • Geochemical characteristics of groundwater in the different kinds of various lithology such as Haman formation, Panyaweol formation, Jusan andesitic formation and Palgongsan granite is distinguished by mineralogical and chemical compositions. The Concentration of the majority of solutes in groundwaters of Haman and Panyaweol formation is higher than in that of andesite and granite. Higher concentration of $HCO_3^{-}{\;}and{\;}SO_4^{2-}$ anions in the groundwater is peculiar. High concentrations of $Ca^{2+},{\;}Mg^{2+},{\;}HCO_3^{-}$ in the groundwaters of the sedimentary rocks result mainly from reaction of $CO^{2-}$ charged water with calcite and weathered feldspars. With the Piper diagram, the groundwaters of Haman formations are mainly plotted in $CaSO_4-CaCl_2$ type, whereas those of Panyaweol formations are plotted in the bothside of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ type. Thses two different types of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ groundwater were originated from dissolution of calcite($Ca(HCO_3)_2)$ and the oxidation of pyrite($CaSO_4-CaCl_2$), respectively. And it also is influenced by anthropogenic contamination. Three factors were extracted from the factor analysis for chemical data. Factor 1, controlled by $SO_4^{2-},{\;}Na^{+},{\;}Ca^{2+}$ and Fe, explains the dissolution of calcite, plagioclase and oxidation of pyrite. Factor 2, controlled by $HCO_3^{-}{\;}and{\;}Mg^{2+}$, mainly explains the dissolution of Mg-carbonates and dolomitization. Factor 3, controlled by $Cl^{-},{\;}K^{+}{\;}and{\;}NO_3^{-}$, is subject to the influence of artificial pollution including industrial waste water disposal. In this study area, some industrial complex which is close to Keumho river show the higher score of factor 3.

Development of an Evaluation Chart for Landslide Susceptibility using the AHP Analysis Method (AHP 분석기법을 이용한 급경사지재해 취약성 평가표 개발)

  • Chae, Byung-Gon;Cho, Yong-Chan;Song, Young-Suk;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.99-108
    • /
    • 2009
  • Since the preexisting evaluation methods of landslide susceptibility take somehow long time to determine the slope stability based on the field survey and laboratory analysis, there are several problems to acquire immediate evaluation results in the field. In order to overcome the previously mentioned problems and incorrect evaluation results induced by some subjective evaluation criteria and methods, this study tried to develop a method of landslide susceptibility by a quantitative and objective evaluation approach based on the field survey. Therefore, this study developed an evaluation chart for landslide susceptibility on natural terrain using the AHP analysis method to predict landslide hazards on the field sites. The AHP analysis was performed by a questionnaire to several specialists who understands mechanism and influential factors of landslide. Based on the questionnaire, weighting values of criteria and alternatives to influence landslide triggering were determined by the AHP analysis. According to the scoring results of the analysed weighting values, slope angle is the most significant factor. Permeability, water contents, porosity, lithology, and elevation have the significance to the landslide susceptibility in a descending order. Based on the assigned scores of each criterion and alternatives of the criteria, an evaluation chart for landslide susceptibility was suggested. The evaluation chart makes it possible for a geologist to evaluate landslide susceptibility with a total score summed up each alternative score.

Palaeomagnetism of Cretaceous Rocks in the Ǔisǒng Area, Kyǒngsang Basin, Korea (의성지역 백악기 암석에 대한 고자기 연구)

  • Kim, In-Soo;Lee, Hyun Koo;Yun, Hyesu;Kang, Hee-Cheol
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.403-420
    • /
    • 1993
  • The Cretaceous Kyongsang Basin is known to be composed of several tectonic blocks (or subbasins) with each distinct stratigraphic succession. The study area represents a major part of one of these blocks, i. e. the $\check{U}is\check{o}ng$ block. The area is charaterized by a suite of WNW-trending sinistral strike-slip faults as well as a number of ring faults. A total of 292 independently oriented core samples were drilled from 23 sites, covering virtually all the formations of the Cretaceous $Ky\check{o}ngsang$ Supergroup. Alternating field and thermal demagnetization experiments were conducted to reveal the primary magnetization. Due to the homoclinal nature of the strata in the area, it was not possible to make use of the conventional fold test It is, however, believed that the primary remanent components have been obtained from the majority of the formations, considering the similarity of the palaeomagnetic pole positions with those of contemporary strata of other blocks and the existence of antiparallel reversed remanence. It was found neither any significant difference in magnetic declination on each side of the strike-slip faults nor systematic change of magnetic declination with distance from the fault-line. This does not support such a block rotation hypothesis associated with the strike-slip faulting in the area as alleged by some authors. The samples from the outcrops on or near the fault-lines were severely overprinted by the recent magnetic fields regardless of age and lithology. Epithermal Au-Ag-Cu-Pb-Zn mineralizations are known along some fault lines in the area. It is interpreted that these two facts are closely related with fluid circulations along the fracture zones caused by fault activities. In regard to the age of the strata as deduced from the magnetostratigraphic consideration, the $Ch\check{o}mgok$ formation and the lower strata should be older than Barremian or 124 Ma. The age of volcanics of the $Yuch^{\prime}\check{o}n$ Group sampled in this study should be younger than Campanian or 83 Ma.

  • PDF

A Study on Mineralogical and Basic Mechanical Properties of Fault Gouges in 16 Faults, Korea (국내 16개 단층대 단층비지의 광물학적 및 기초물성에 관한 연구)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Choo, Chang Oh;Kim, Woo-Seok;Seo, Yong-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.109-126
    • /
    • 2015
  • Because fault gouge developed at the center of fault is recognized as one of the most important weak sites, it is evident that clay mineralogy and physical properties greatly affect the rock stability. The purpose of this study is to establish the relationship of mineralogy and physical factors that control rock stability in fault zones. We analyzed a total of 51 samples from 16 main faults which were selected from a Korea fracture map, using XRD, SEM, and physical analyses like unit weight, friction and cohesion properties. Though it is considered that the most common clay minerals comprising fault gouge are kaolinite, illite and smectite, clay mineralogy slightly varies depending on lithology: illite > smectite > kaolinite and chlorite in volcanic rocks, kaolinite and chlorite > illite > smectite in sedimentary rocks, and illite > smectite > kaolinite and chlorite in abundance, respectively. Friction angle decreases with increasing clay content. Cohesion increases with increasing clay content below the 45 % region while it decreases with increasing clay content at the region higher than 45%, with some scatters in the data. It is likely that these results are ascribed to the physical heterogeneity of fault gouges with varying content of different clay minerals.

Characteristics and Energy Absorbing Capacity for Rockfall Protection Fence from In-Situ Rockfall Tests (현장 낙석실험을 통한 낙석방지울타리의 특성 및 성능 평가)

  • 구호본;박혁진;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.111-121
    • /
    • 2001
  • Rockfall protection fences are used for diminishing rockfall damage in roads side slopes. In order to install the fences in effective way, the conditions of rock slopes and total predicted impact energy of fa11ing rock should be considered. However, the fences have been constructed without any consideration for lithology, height and slope angle of rock slope in Korea. In addition, the information about the performance of the protection fences, which should be evaluated by in-situ test or laboratory test in order to check out the practical use in the field, is not available. Therefore, in design manual for the rockfall protection fence, the specific details for the installation of this type of fence are not provided yet. The full sized rockfall in situ test was carried out for the calculation of falling energy of rock and the evaluation of the maximum energy absorbing capacity of fence. For this test, the rock slopes whose heights are about 20 m and dip angle of 65 degree, have been chosen. This is because those geometries are mean height and slope angle of most road cut slopes along Korean national highway. Based on the preliminary simulation procedure, four different sizes of concrete ball (0.7, 1.3, 2.3 and 4.3 ton) were prepared and flour different types of protection fence were constructed. The results of this test provide information about the maximum energy absorbing capacity of the fence, kinetic energy of rockfall and restitution coefficient, and these results can be utilized in the establishment of rockfall fence design and construction manual.

  • PDF