• 제목/요약/키워드: Lithium oxide

검색결과 359건 처리시간 0.025초

용액공정으로 제작한 리튬 도핑된 N-ZTO/P-SiC 이종접합 구조의 전기적 특성 (The Effects of Lithium-Incorporated on N-ZTO/P-SiC Heterojunction Diodes by Using a Solution Process)

  • 이현수;박성준;안재인;조슬기;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.203-207
    • /
    • 2018
  • In this work, we investigate the effects of lithium doping on the electric performance of solution-processed n-type zinc tin oxide (ZTO)/p-type silicon carbide (SiC) heterojunction diode structures. The proper amount of lithium doping not only affects the carrier concentration and interface quality but also influences the temperature sensitivity of the series resistance and activation energy. We confirmed that the device characteristics vary with lithium doping at concentrations of 0, 10, and 20 wt%. In particular, the highest rectification ratio of $1.89{\times}107$ and the lowest trap density of $4.829{\times}1,022cm^{-2}$ were observed at 20 wt% of lithium doping. Devices at this doping level showed the best characteristics. As the temperature was increased, the series resistance value decreased. Additionally, the activation energy was observed to change with respect to the component acting on the trap. We have demonstrated that lithium doping is an effective way to obtain a higher performance ZTO-based diode.

리튬고분자 이차전지의 전기적 전기화학적 특성

  • 박수길;박종은;손원근;류부형;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 1998
  • The new type polymer electrolyte composed of polyacrylonitrile(PAN) baed polymer electrolyte contain LiClO$_4$-EC/PC and LiPF$\sub$6/-EC/PC were developed for the weightless and long or life time of lithium polymer battery system with using polyaniline electrode. The gel type electrolytes were prepared by PAN at different lithium salts in the glove box. We prepared for polymer electrolyte with knife casting method. The minimum thickness of PAN gel electrolyte for the slim type is about <400∼500$\mu\textrm{m}$. These gel electrolytes showed good compatibility with lithium electrode. The test cell of Li/polymer electrolyte/Lithium cobalt oxide solid state cell which was prepared by different lithium salt was researched by electrochemical technique. Resistance of polymer electrolyte which consist of LiClO$_4$ is more less than that of LiPF$\sub$6/ and cycle life is more longer than that of LiPF$\sub$6/.

  • PDF

Bulky carbon layer inlaid with nanoscale Fe2O3 as an excellent lithium-storage anode material

  • Nguyen, Thuy-An;Lee, Sang-Wha
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.140-145
    • /
    • 2018
  • Bulky carbon layer uniformly distributed with nanoscale $Fe_2O_3$ was prepared via a direct carbonation of $Fe^{3+}$-polyacrylonitrile complexes at $700^{\circ}C$ under $N_2$ flow. The iron oxide carbon composites exhibited an excellent cycling performance for lithium storage with a reversible capacity of ${\sim}810mAh\;g^{-1}$ after 250 cycles at a current rate of $100mA\;g^{-1}$. The enhancement was mainly attributed to dual functions of bulky carbon layer which facilitated the lithium-ion diffusion and accommodated the volume changes of active $Fe_2O_3$ during charge/discharge process. Our novel chemical strategy is quite effective for scalable fabrication of high capacity lithium-storage materials.

Shear bond strength of veneering ceramic to coping materials with different pre-surface treatments

  • Tarib, Natasya Ahmad;Anuar, Norsamihah;Ahmad, Marlynda
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권5호
    • /
    • pp.339-344
    • /
    • 2016
  • PURPOSE. Pre-surface treatments of coping materials have been recommended to enhance the bonding to the veneering ceramic. Little is known on the effect on shear bond strength, particularly with new coping material. The aim of this study was to investigate the shear bond strength of veneering ceramic to three coping materials: i) metal alloy (MA), ii) zirconia oxide (ZO), and iii) lithium disilicate (LD) after various pre-surface treatments. MATERIALS AND METHODS. Thirty-two (n = 32) discs were prepared for each coping material. Four pre-surface treatments were prepared for each sub-group (n = 8); a) no treatment or control (C), b) sandblast (SB), c) acid etch (AE), and d) sandblast and acid etch (SBAE). Veneering ceramics were applied to all discs. Shear bond strength was measured with a universal testing machine. Data were analyzed with two-way ANOVA and Tukey's multiple comparisons tests. RESULTS. Mean shear bond strengths were obtained for MA ($19.00{\pm}6.39MPa$), ZO ($24.45{\pm}5.14MPa$) and LD ($13.62{\pm}5.12MPa$). There were statistically significant differences in types of coping material and various pre-surface treatments (P<.05). There was a significant correlation between coping materials and pre-surface treatment to the shear bond strength (P<.05). CONCLUSION. Shear bond strength of veneering ceramic to zirconia oxide was higher than metal alloy and lithium disilicate. The highest shear bond strengths were obtained in sandblast and acid etch treatment for zirconia oxide and lithium disilicate groups, and in acid etch treatment for metal alloy group.

유동상 화힉증착에 의한 리튬이차전지 전극용 탄소재료의 표면개질 (Surface Modification of Synthetic Graphite as an Electrode by Fluidized-bed Chemical Vapor Deposition for Lithium Secondary Batteries)

  • 류덕현;이중기;박달근;윤경석;조병원;설용건
    • 전기화학회지
    • /
    • 제3권3호
    • /
    • pp.173-177
    • /
    • 2000
  • 리튬 이차 전지의 성능은 부극으로 쓰이는 탄소재료의 표면의 미세 구조에 크게 의존한다. 본 연구에서는 이러한 표면 구조의 개질을 위해 유동상 화학증착법을 도입하여 금속 및 금속 산화물을 탄소재료 표면에 코팅하여 그 성능을 전기 화학적으로 평가하였다. 주석산화물을 코팅한 탄소 전극은 원래의 탄소 전극에 비해 용량의 상승을 나타내었으나 사이클이 진행됨에 따라 주석산화물이 코팅된 전지의 용량은 심각한 부피 변화에 의해 저하되어 사이클 수명이 감소되었다. 그러나, 부피 변화를 완화시켜주는 비활성 매트릭스 역할을 하는 구리를 주석 산화물 위에 코팅함으로 인해 부피 변화에 의한 용량 저하를 감소시킬 수 있었다.

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

제일원리계산을 이용한 리튬이차전지 양극활물질 LiNiO2의 표면 특성에 관한 연구 (First-Principles Investigation of the Surface Properties of LiNiO2 as Cathode Material for Lithium-ion Batteries)

  • 최희성;이맹은
    • 전기화학회지
    • /
    • 제16권3호
    • /
    • pp.169-176
    • /
    • 2013
  • 현재 이차전지에서 사용중인 양극활물질은 구조 안정성이 높은 층상구조(Layered Structure)의 리튬 금속 산화물(Solid State Lithium Oxide Compounds)이 주로 사용된다. 최근에는 리튬이차전지의 성능향상을 위해서 음극활물질과 전해질 사이의 계면뿐만 아니라, 양극활물질과 전해질 사이의 계면에 관한 연구가 활발히 진행되고 있으며, 이러한 계면의 연구를 위해서는 음극활물질 뿐만 아니라, 양극활물질의 표면에 관한 연구도 선행적으로 이루어져야 하는 상황이다. 대표적인 리튬금속 산화물질인 니켈산리튬($LiNiO_2$)과 코발트산리튬($LiCoO_2$)은 서로 매우 유사한 구조를 갖는 층상구조의 양극활물질이다. 코발트산리튬이 다양한 실험적, 이론적 연구가 진행된 반면에, 니켈산 리튬은 실험적 연구에 비해서 이론적 연구가 부족하다. 따라서, 본 연구에서는 니켈산리튬의 X-선 회절계 측정 결과(XRD data)에 나오는9개의 표면 방향을 범밀도함수이론(Density Functional Theory)을 이용하여 니켈산리튬 표면의 표면 에너지를 계산하였다. 니켈산리튬의 X-선 회절계 측정 결과(XRD data)에서는 (003), (104), (101), (110) 결정 등등이 순차적으로 주요하게 존재하는 것으로 확인되었다. 그러나 시뮬레이션을 이용한 각각의 표면 에너지 계산 결과, X-선 회절계 측정 결과와 다른 순서로 안정한 표면 에너지가 나타나는 결과를 얻었다. 따라서 에너지적으로 안정한 표면이자, X-선 회절계에서 주요하게 나타나는 (104)와 (101) 방향의 니켈산리튬 표면이 많이 노출되어 Li 이온의 충방전시 리튬의 삽입 탈리에 영향을 줄 것으로 예상된다.

리튬이온의 선택적 투과를 위한 Lithium Lanthanum Titanate계 분리막 제조 공정 개발 (Development of Lithium Lanthanum Titanate (LLTO) Membrane Manufacturing Process for Selective Separation of Lithium Ion)

  • 김영일;박상철;신광호;김인영;이기안;정성균;이빈
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.22-28
    • /
    • 2023
  • The global demand for raw lithium materials is rapidly increasing, accompanied by the demand for lithiumion batteries for next-generation mobility. The batch-type method, which selectively separates and concentrates lithium from seawater rich in reserves, could be an alternative to mining, which is limited owing to low extraction rates. Therefore, research on selectively separating and concentrating lithium using an electrodialysis technique, which is reported to have a recovery rate 100 times faster than the conventional methods, is actively being conducted. In this study, a lithium ion selective membrane is prepared using lithium lanthanum titanate, an oxide-based solid electrolyte material, to extract lithium from seawater, and a large-area membrane manufacturing process is conducted to extract a large amount of lithium per unit time. Through the developed manufacturing process, a large-area membrane with a diameter of approximately 20 mm and relative density of 96% or more is manufactured. The lithium extraction behavior from seawater is predicted by measuring the ionic conductivity of the membrane through electrochemical analysis.