• Title/Summary/Keyword: Lithium ion cell

Search Result 275, Processing Time 0.03 seconds

Surface Morphology Changes of Lithium/Sulfur Battery using Multi-walled carbon nanotube added Sulfur Electrode during Cyclings (탄소나노튜브가 첨가된 유황전극을 사용한 리튬/유황 전지의 사이클링에 의한 표면형상변화)

  • Park, Jin-Woo;Yu, Ji-Hyun;Kim, Ki-Won;Ryu, Ho-Suk;Ahn, Jou-Hyeon;Jin, Chang-Soo;Shin, Kyung-Hee;Kim, Young-Chul;Ahn, Hyo-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.174-179
    • /
    • 2011
  • We investigated the surface morphology changes of a lithium/sulfur battery using multi-walled canbon nanotube added sulfur electrode during charge-discharge cycling. The Li/S cell showed the first discharge capacity of 1286 mAh/g-S, which utilized is 71% of the theoretical value. It decreased to 328 mAh/g-S at the 100th cycle, which corresponds to about 19% utilization of the total sulfur in the cathode. The spherical lumps of the reaction product were observed on the surface of the sulfur electrode. This material was verified as lithium sulfide by X-ray diffraction measurement. The pores in the separator were filled with reaction product. Thus the diffusion of the $Li^+$ ion decreased, which resulted in the decreased capacity of the Li/S cell.

Modeling of the Cycle Life of a Lithium-ion Polymer Battery (리튬 이온 폴리머 전지의 사이클 수명 모델링)

  • Kim, Ui Seong;Lee, Jungbin;Yi, Jaeshin;Shin, Chee Burm;Choi, Je Hun;Lee, Seokbeom
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.344-348
    • /
    • 2009
  • One-dimensional modeling was carried-out to predict the capacity loss of a lithium-ion polymer battery during cycling. The model not only accounted for electrochemical kinetics and ionic mass transfer in a battery cell, but also considered the parasitic reaction inducing the capacity loss. In order to validate the modeling, modeling results were compared with the measurement data of the cycling behaviors of the lithium-ion polymer batteries having nominal capacity of 5Ah from LG Chem. The cycling was performed under the protocol of the constant current discharge and the constant current and constant voltage charge. The discharge rate of 1C was used. The range of state of charge was between 1 and 0.2. The voltage was kept constant at 4.2 V until the charge current tapered to 50 mA. The retention capacity of the battery was measured with 1C and 5C discharge rates before the beginning of cycling and after every 100 cycles of cycling. The modeling results were in good agreement with the measurement data.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Compative analysis of electrical characteristics of the high-capacity and high c-rate Lithium-ion cell ECMs according to the discharge current size and SOC range (방전전류크기 및 SOC 구간별 고용량 및 고방전 리튬-이온 셀 ECMs의 전기적 특성 비교)

  • Lee, Hyun-jun;Park, Joung-hu;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.341-342
    • /
    • 2016
  • 본 논문에서는 고용량 및 고방전 리튬-이온($LiCoO_2$)원통형 (cylindrical)셀의 방전전류크기 및 SOC 구간에 따른 등가회로 파라미터의 특성을 비교 분석해보고 SOC 추정시 모델링 및 알고리즘 차별화의 필요성을 제시하고자 한다.

  • PDF

The Electrical Characteristic of Composite Film for Lithium Secondary Battery by adding DMSO (DMSO 첨가에 따른 리튬이차전지용 복합필름의 전기적 특성)

  • 박수길;김종진;이창진;김상욱;김현후;임기조;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.269-272
    • /
    • 1997
  • The Lithium ion secondary battery has been developed for high energy density of portable electrical device and electronics. Among the many conductive polymer materials, the positive active film for Li polymer battery system was synthesized successfully from polyphenylene diamine(PPD) by chemical polymerization in our lab. And PPD-DMcT(2, 5-dimercapto-1, 3, 4-thi-adiazole) composite flim conductive material, at high temperature was also prerared with the addition of dimethylsulfoxide(DMSO). The surface morphology and thermal stability of prepared composite flim was carried out by using SEM and TGA, respectively. Electrochemical and electrical conductivity of composite flim were also discussed by cyclic voltammetry and four-probe method in dry box(<27pm). And the electrode reaction mechanism was detected and analyzed from the half cell unit battery system.

  • PDF

Fabrication and Characterization of ${LiMn_2}{O_4}$ Cathode for Lithium Rechargeable Battery by R.F.Magnetron Sputtering (R.F. Magnetron Sputtering을 이용한 리튬이차전지 정극용 ${LiMn_2}{O_4}$의 제조 및 특성)

  • 우태욱;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.552-558
    • /
    • 2000
  • LiMn2O4 thin fiolm cathodes for Li-ion secondary battery were fabricated by r.f. magnetron sputtering technique. As-deposited films were amorphous. A spinel structure could not be obtained LiMn2O4 films by in-situ thermal annealing. After post thermal annealing over $700^{\circ}C$ in oxygen atmosphere, LiMn2O4 films prepared above 100 W r.f. power could be crystallized into a spinel structure. The electrochemical property of the LiMn2O4 film cathodes was tested in a Li/1 M LiClO4 in PC/LiMn2O4 cell. From cyclic voltammetry at scan rate of 2mV/sec of 2.5~4.5V, LiMn2O4 electrode prepared by post annealing at 75$0^{\circ}C$ showed good initial capacity. LiMn2O4 electrode prepared by post annealing at 80$0^{\circ}C$ showed the best crycling performance.

  • PDF

Charge-Discharge Characteristics of Carbonaceous Materials for a Negative Electrode in Lithium-Ion Batteries (리튬이온전직용 카본계부극재료의 충방전 특성)

  • 김정식;박영태;김상열;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.69-74
    • /
    • 1999
  • Graphite and carbonaceous materials intercalate and deintercalate Li-ion reversibly into their layered structures. These materials show an excellent capacity for using a negative electrode in Li-ion batteries, because the electrochemical potential of Li-ion intercalated carbon is almost identical with that of lithium metal. Carbon used in this study was obtained by the pyrolysis of petroleum pitch, and heat-treated at the several temperatures between $700^{\circ}C$ and $1300^{\circ}C$. XRD analysis revealed that crystallization of carbon increased with increasing the heat treatment temperature. Charge/discharge properties were studied by a constant-current step at the rate of 0.1C, and the interfacial reaction between the electrolyte and the surface of carbon electrode was studied by cyclic voltammetry. Cell capacities were investigated in terms of the heat treatment temperature and the cycle number. Reversible capacity increased with the heat treatment temperature up to $1000^{\circ}C$, thereafter decreased continuously. Also, charge capacity decreased with the cycle number, while the reversibility improved with it.

  • PDF

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Vasudevarao Pasala;Satyanarayana Maddukuri;V. Sethuraman;Rekha Lankipalli;Devi Gajula;Venkateswarlu Manne
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.262-271
    • /
    • 2023
  • For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Development of Tucson Fuel Cell Hybrid Electric Vehicle (투싼 연료전지 하이브리드 차량 개발)

  • Jeon Soonil;Choi Seoho;Kwon Soonwoo;Lee Kyuil;Jeong Sungjin;Yun Seong Gon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.357-360
    • /
    • 2005
  • Hyundai Motor Company developed the second generation of fuel cell hybrid electric vehicle based on Tucson SUV in 2004. This vehicle has cold start capability below -10C and its driving performances including maximum speed and accelerating time are almost similar to conventional Tucson SUV's performances without any sacrifice in terms of cabin space. Especially. the cold start capability was realized by utilizing only internal power sources such as fuel cell power and high voltage lithium ion polymer battery. In this paper, we will briefly introduce specifications of Tucson FCEV and its driving performances based on field test and simulations.

  • PDF