• 제목/요약/키워드: Lithium ion ($Li^+$)

검색결과 687건 처리시간 0.048초

액상 반응에 의해 합성한 리튬코발트산화물을 이용한 Lithium ion 2차전지의 충방전 특성 (Charge-discharge Behaviour of Lithium Ion Secondary Battery Using LiCo$O_2$ Synthesized by a Solution Phase Reaction)

  • 김상필;조정수;박정후;윤문수;심윤보
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.1049-1054
    • /
    • 1998
  • The LiCo$O_2$ powder was synthesized by a solution phase reaction. This shows a high (003) peak intensity and low (104) or (101) peak intensities in X-ray diffraction spectra. The LiCo$O_2$/Li cell shows an initial discharge capacity of 102.9mAh/g and an average discharge potential or 3.877V at a current density of 50mA/g between 3.0~4.2V. The peaks of dQ/dV plot are associated with Li ion intercalation/deintercalation reaction. To evaluate the cycleability of an actual battery system, cylindrical lithium ion cell was manufactured using graphitized MPCF anode and LiCoO$_2$ cathode. After 100th cycle, this cel maintains 80% capacity of 10th cycle value. The LiCoO$_2$/MPCF cell has a high discharge voltage of 3.6~3.7V and a good cycle life performance on cycling between 4.2~2.7V.

  • PDF

기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향 (The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery)

  • 김종헌;소승범;고광모;이경진;김현석
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가 (Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites)

  • 황준현;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.574-582
    • /
    • 2022
  • A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Ex-situ 7Li MAS NMR Study of Olivine Structured Material for Cathode of Lithium Ion Battery

  • Lee, Youngil;An, JiEun;Park, Seul-A;Song, HyeYeong
    • 한국자기공명학회논문지
    • /
    • 제18권2호
    • /
    • pp.63-68
    • /
    • 2014
  • $^7Li$ nuclear magnetic resonance (NMR) spectra have been observed for $LiMPO_4$ (M = Fe, Mn) samples, as a promising cathode material of lithium ion battery. Observed $^7Li$ shifts of $LiFe_{1-x}Mn_xPO_4$ (x = 0, 0.6, 0.8, and 1) synthesized with solid-state reaction are compared with calculated $^7Li$ shift ranges based on the supertranferred hyperfine interaction of Li-O-M. Ex situ $^7Li$ NMR study of $LiFe_{0.4}Mn_{0.6}PO_4$ in different cut-off voltage for the first charge process is also performed to understand the relationship between $^7Li$ chemical shift and oxidation state of metals affected by delithiation process. The increment of oxidation state for metals makes to downfield shift of $^7Li$ by influencing the supertranferred hyperfine interaction.

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun;Lee, Suhyun;Kim, Kun Woo;Son, Jungman;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.424-430
    • /
    • 2021
  • The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

$Li_{3x}La_{(2/3-x)}TiO_3$계의 리튬 이온전도특성 (Lithium Ion Conductivity in $Li_{3x}La_{(2/3-x)}TiO_3$ system)

  • 정훈택;정태석;김호기
    • 한국세라믹학회지
    • /
    • 제33권3호
    • /
    • pp.293-298
    • /
    • 1996
  • Room temperature Li+ ion conductivities of Li3xLa(2/3-x)TiO3 system with x=0.117~0.317 were measured by complex impedance method. ICP, SEM and XRD analysis were conducted to study the main factor which influence the Li+ ion conductivity. Li+ ion conductivity seems to have a close relationship with the crystal structure of primitive cell increase as the primitive cell as close to cubic.

  • PDF

리튬이온전지용 Conducting Agents의 전기화학적 성능에 미치는 영향 (Effects on Electrochemical Performances of Conducting Agents for Lithium-ion Batteries)

  • 이창우;이미숙;문성인;김영규;김병화;김동훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.593-594
    • /
    • 2005
  • Lithium-ion batteries have used the layered $LiCoO_2$ materials as cathodes, but Co is relatively toxic and expensive. In this regard, the spinel $LiMn_2O_4$ has become appealing because manganese is inexpensive and environmentally benign. In general, cathodes for lithium ion batteries include carbon as a conductive agent that provides electron transfer between the active material and the current collector. In this work, we selected Acetylene Black and Super P Black as conducting agents, and then carried out comparative investigation for the performances of the cells using different conducting agents with different particle size. As a consequence, Li/$LiMn_2O_4$ cells with Super P Black show better electrochemical performances than those with Acetylene Black.

  • PDF

Preparation of LiCoO$_2$from Used Lithium Ion Battery by Hydrometallurgical Processes

  • Lee, Churl-Kyoung;Rhee, Kang-In;Yang, Dong-Hyo;Yu, Hyo-Shin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.240-244
    • /
    • 2001
  • Recycling process involving mechanical, thermal, hydrometallurgical, and sol-gel step has been applied to recover cobalt and lithium from spent lithium ion batteries and to synthesize LiCoO$_2$from leach liquor as cathodic active materials. Electrode materials containing lithium and cobalt could be concentrated with 2-step thermal and mechanical treatment. Leaching behaviors of the lithium and cobalt in nitric acid media was investigated in terms of reaction variables. Hydrogen peroxide in 1 M HNO$_3$solution turned out to be an effective reducing agent by enhancing the leaching efficiency. O f many possible processes to produce LiCoO$_2$, the amorphous citrate precursor process (ACP) has been applied to synthesize powders with a large specific surface area and an exact stoichiometry. After leaching used LiCoO$_2$with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.1 by adding a fresh LiNO$_3$solution. Then, 1 M citric acid solution at a 100% stoichiometry was also added to prepare a gelatinous precursor. When the precursor was calcined at 95$0^{\circ}C$ for 24 hr, purely crystalline LiCoO$_2$was successfully obtained. The particle size and specific surface area of the resulting crystalline powders were 20 пm and 30 $\textrm{cm}^2$/g, respectively The LiCoO$_2$powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

  • PDF

Polyurethane기 겔폴리머전해질을 이용한 Advanced Lithium-Ion Battery에 관한 연구 (A Study on Advanced Lithium-Ion Battery with Polyurethane-Based Gel Polymer Electrolyte)

  • 김현수;문성인;윤문수;김상필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.252-254
    • /
    • 2002
  • In this study, polyurethane acrylate macromer was synthesized and it was used in a gel polymer electrolyte, and then its electrochemical performances were evaluated. LiCoO$_2$/GPE/MCF cells were also prepared and their performances depending on discharge currents and temperatures were evaluated. ionic conductivity of the gel polymer electrolyte with PUA at room temperature and -20$^{\circ}C$ was ca. 4.5 x 10$\^$-3/ S/cm and 1.7${\times}$10$\^$-3/ S/cm, respectively. GPE was stable electrochemically up to 4.5 V vs. Li/Li$\^$+/. LiCoO$_2$/GPE/MCF cell showed a good high-rate and a low-temperature performance.

  • PDF