• 제목/요약/키워드: Lithium Rechargeable Battery

검색결과 131건 처리시간 0.029초

Partially Carbonized Poly (Acrylic Acid) Grafted to Carboxymethyl Cellulose as an Advanced Binder for Si Anode in Li-ion Batteries

  • Cho, Hyunwoo;Kim, Kyungsu;Park, Cheol-Min;Jeong, Goojin
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.131-138
    • /
    • 2019
  • To improve the performance of Si anodes in advanced Li-ion batteries, the design of the electrode plays a critical role, especially due to the large volumetric expansion in the Si anode during Li insertion. In our study, we used a simple fabrication method to prepare Si-based electrodes by grafting polyacrylic acid (PAA) to a carboxymethyl cellulose (CMC) binder (CMC-g-PAA). The procedure consists of first mixing nano-sized Si and the binders (CMC and PAA), and then coating the slurry on a Cu foil. The carbon network was formed via carbonization of the binders i.e., by a simple heat treatment of the electrode. The carbon network in the electrode is mechanically and electrically robust, which leads to higher electrical conductivity and better mechanical property. This explains its long cycle performance without the addition of a conducting agent (for example, carbon). Therefore, the partially carbonized CMC-g-PAA binder presented in this study represents a new feasible approach to produce Si anodes for use in advanced Li-ion batteries.

음극 폴리아센 반도체 재료의 전기화학적 특성연구 (The Electrochemical Property Studies on Polyacenic Semiconductor Anode Material)

  • 김한주;박종은;손원근;이홍기;박수길;이주성
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.134-137
    • /
    • 1999
  • Penol-formaldehyde의 열처리에 의해 제조된 polyacenic semiconductor material(PAS) 전극은 유용한 전극중의 하나이다. 리튬 충전지의 음극물질로서 무정형 탄소재료들은 그들의 높은 전기 화학적 성능과 수명 때문에 활발히 연구되어 왔다. 탄소재료들은 Li 전극에 있어서 가장 중요한 문제중의 하나인 Li dendrite의 형성을 초래하지 않는다. PAS는 Li cluster의 해방 없이 $C_2Li$상태로의 높은 Li-doped를 보이는 상대적으로 낮은 온도$(550\~750^{\circ}C)$에서 페놀 레진으로 부터 제조되었다. 우리는 다양한 온도에서 PAS를 제조하고 제조된 시료의 전기 화학적 성질들에 관해 연구를 했다. 우리는 $0.24\~0.4$범위인 [H]/[C]몰비를 변화시키려 노력했다. PAS의 전기화학적 성질을 고려할 때, PAS재료는 고분자전지의 전극에 적합한 물질이다.

TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성 (Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material)

  • 최병현;지미정;권용진;김은경;남산
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

Ru를 첨가한 음극활물질 Li4Ti5O12의 전기화학적 특성 (Electrochemical Characteristics of Ru Added Li4Ti5O12 as an Anode Material)

  • 조우람;나병기
    • 청정기술
    • /
    • 제20권4호
    • /
    • pp.433-438
    • /
    • 2014
  • 전기자동차와 하이브리드 전기자동차에 요구되는 높은 충 방전 속도, 안전성, 대형화에 적합한 충 방전 전지의 개발은 많은 관심을 받고 있다. 스피넬 구조의 $Li_4Ti_5O_{12}$는 리튬이온이차전지의 음극활물질로 충 방전 시 부피변화가 거의 없기 때문에 수명특성이 뛰어나고, 전해액이 분해되는 전위보다 높은 작동 전압을 갖기 때문에 안정한 장점이 있다. 본 실험에서는 $Li_4Ti_5O_{12}$의 단점인 전기전도성을 향상시키고자 소량의 Ru를 첨가하여 $Li_4Ti_5O_{12}$를 고상법으로 제조하여 테스트하였다. TGA-DTA, XRD, SEM, 충 방전 테스트를 통해 분석을 실시하였다. Ru를 첨가하였을 때 용량은 약간 감소하였지만, 분극현상이 감소하는 것을 확인하였다. 그리고 Ru를 3%와 4% 첨가하였을 때 높은 전류밀도인 10 C-rate 충 방전에서 용량감소율이 줄었다.

Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조 (Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate)

  • 윤미혜;권소영;정유영;조두현;구자경
    • 멤브레인
    • /
    • 제20권3호
    • /
    • pp.259-266
    • /
    • 2010
  • 다공성 Poly(propylene) 분리막의 지지 하에 전해질 용액 (EC/DEC 1 : 1 혼합물 내의 $LiPF_6$ 1 M 용액) 내에서 DEGDMA [Di(ethylene glycol) dimethacrylate]의 $70^{\circ}C$ 열중합을 통하여 겔 고분자 전해질(GPE)막이 합성 되었다. 합성된 겔 고분자 전해질막의 이온전도도 및 전기화학적 안정성은 AC 임피던스법 및 CV (cyclic voltametry)법에 의하여 측정 평가하였다. 겔 고분자를 전해질로, 그리고 양극 및 음극으로는 각각 $LiMi_{0.8}Co_{0.2}O_2$ 및 graphite로 이용하여 리튬이온전지(LIB)도 제작하였다. 열중합을 통하여 리튬 이온전지에 적합한 이온전도도($10^{-3}\;S/cm$ 이상) 및 전기화학적 안정성을 보이면서 자체적인 성상을 유지하는 겔 고분자 전해질막을 얻을 수 있었다. 단량체 함량 5%의 전구체로 제작한 겔 고분자 전지는 단량체 함량이 7.0% 및 10.0%인 경우에 비하여 우수한 고율 및 충-방전 효율을 보였다.

리튬이차전지용 고체 전해질의 최근 진전과 전망 (Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries)

  • 김주미;오지민;김주영;이영기;김광만
    • 전기화학회지
    • /
    • 제22권3호
    • /
    • pp.87-103
    • /
    • 2019
  • 현재 상용화되어 있는 리튬이온전지에 사용하고 있는 비수계 유기 전해액은 가연성, 부식성, 고휘발성, 열적 불안정성 등의 단점 때문에 더욱 안전하고 장수명을 보이는 고체 전해질로 대체하는 연구가 진행되고 있으며, 이것은 전기자동차 및 에너지저장 시스템과 같은 중대형 이차전지에도 효율적으로 활용될 수 있다. 다양한 형태의 고체 전해질 중에서 현재 고분자 매트릭스에 활성 무기 충진재가 포함되어 있는 복합 고체 전해질이 고이온전도도와 전극과의 탁월한 계면접촉을 이루는데 가장 유리한 것으로 알려졌다. 본 총설에서는 우선 고체 전해질의 종류와 연혁에 관해 간단히 소개하고, 고분자 및 무기 충진재 (불활성 및 활성)로 구성되는 고체 고분자 전해질 및 무기 고체 전해질의 기본적 물성 및 전기화학적 특성을 개괄한다. 또한 이 소재들의 형상을 기준으로 입자형 (0D), 섬유형 (1D), 평판형 (2D), 입체형 (3D)의 형식으로 구성된 복합고체 전해질과 이에 따른 전고체 전지의 전기화학적 특성을 논의한다. 특히 리튬금속 음전극을 사용하는 전고체 전지에 있어서 양전극-전해질 계면, 음전극-전해질 계면, 입자간 계면의 특성에 관해 소개하고, 마지막으로 현재까지 보고된 관련 총설들을 참조하여 복합 고체 전해질 기술의 현재 요구조건 및 미래 전망을 알아본다.

리튬이차전지용 탄소 코팅된 Li2MnSiO4 양극활물질의 상형성 거동 및 충방전 특성 (Phase Formation Behavior and Charge-discharge Properties of Carbon-coated Li2MnSiO4 Cathode Materials for Lithium Rechargeable Batteries)

  • 선호정;채수만;심중표
    • 전기화학회지
    • /
    • 제18권4호
    • /
    • pp.143-149
    • /
    • 2015
  • Planetary ball mill과 고상반응법을 사용하여 실리케이트계 탄소 코팅된 $Li_2MnSiO_4$ 양극활물질 분말을 합성하였으며 충방전 특성을 조사하였다. 전기화학적 활성을 지니는 ${\beta}-Li_2MnSiO_4$ 상을 형성하기 위하여 하소 온도와 분위기를 조절하였으며 ${\beta}-Li_2MnSiO_4$ 단일상에 가까운 탄소 코팅된 $Li_2MnSiO_4$ 활물질 분말을 제조할 수 있었다. 합성된 분말은 100 nm 정도 크기의 1차 입자가 뭉쳐있는 2차 입자 형태를 보였다. $Li_2MnSiO_4$ 활물질에서 Li의 삽입/탈리가 가능하려면 탄소의 첨가가 필요하였으며, 4.8 wt%의 탄소가 코팅된 $Li_2MnSiO_4$ 활물질에서 초기용량 192 mAh/g를 얻을 수 있었다.

리튬 전지용 $MnO_2$ Cathode의 제조 및 전기화학적 특성 (The Preparation and Electrochemical Properties of $MnO_2$ Cathode for Lithium Rechargeable Battery)

  • 유영한;김영재;박준기;서부완;정인성;김주승;박복기;구할본;문성인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1682-1684
    • /
    • 1996
  • Recently, because diffusion of cordless machine and smart card and so on, and concern of unpolluted materials, one are concerned with Li secondary batteries. Li secondary batteries have high voltage, high energy density and high power density, and heavy metal pollution problems are little. Mn is low price and is distributed much quantity. Therefore, we investigated $MnO_2$. In this study, we worked the electrochemical properties and charge/discharge characteristics of $MnO_2/Li$ cells. In results, the more heating temperature is high, the more ${\gamma}-phase$ varied ${\beta}-phase$, and when $MnO_2$ is heated at $320^{\circ}C$ and super-s-black 20wt% is mixed, characteristics are the best.

  • PDF

전해중합법에 의한 Polypyrrole/SPE/Li Cell의 온도에 따른 충방전 특성 (Charge/discharge Characteristics of Polypyrrole/SPE/Li Cell with Polypyrrole film Prepared by Electropolymerization Method as a Function of Temperature)

  • 김종욱;유영한;조재철;정운조;박계춘;박복기;구할본;문성인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1703-1706
    • /
    • 1996
  • The purpose of this study is to research and develop polypyrrole(PPy) positive for thin film rechargeable lithium battery. We investigated cyclic voltammetry, AC impedance response and charge/discharge cycling of PPy/SPE/Li cells as a function of temperature. The redox capacity of $PPy/CF_{3}SO_{3}$ film was the most large. The discharge capacity of PPy/SPE/Li cell with $PPy/CF_{3}SO_{3}$ film was higher than those of $PPy/ClO_{4}$ and $PPy/AsF_6$ films at all cycles. The energy density of PPy/SPE/Li cells during 1st cycle was 73, 90 and 101Wh/kg at $25^{\circ}C$, $45^{\circ}C$ and $60^{\circ}C$, respectively. The improvement of energy density is due to reduction of charge-transfer resistance associated doping-undoping process in PPy film with Increasing temperature. $PPy/CF_{3}SO_{3}$ film shows a good property on charge/discharge cycling in PEO-$LiClO_4$-PC-EC electrolyte.

  • PDF

고체 고분자 전해질을 사용한 $V_{6}O_{13}$ Composite/Li Cell의 충방전 특성 (Charge/discharge Properties of $V_{6}O_{13}$ Composite/Li Cell with Solid Polymer Electrolyte)

  • 김종욱;유영한;정인성;박복기;구할본;문성인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1414-1417
    • /
    • 1996
  • The purpose of this study Is to research and develop $V_{6}O_{13}$ composite cathode for lithium thin film battery. $V_{6}O_{13}$ represents a class of cathode active material used in Li rechargeable batteries. In this study, we investigated cyclic voltammetry and charge/discharge characteristics of $V_6O_{13}$/SPE/Li cells. Cyclic voltammogram of $V_{6}O_{13}$/SPE/Li cell at scan rate 1mV/sec showed reduction peaks of 2.25V and 2.4V and oxidation peaks of 2.4V and 2.2V. The discharge curve of $V_{6}O_{13}$/SPE/Li cell showed 4 potential plateaus. The discharge capacity was decreased in the beginning of charge/discharge cycling. After 8th cycling, the discharge capacity was stable. The discharge capacity of 1st cycle and 15th cycle was 290mAh/g and 147mAh/g at $25^{\circ}C$, respectively.

  • PDF