Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate

Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조

  • Yun, Mi-Hye (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kwon, So-Young (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Jung, Yoo-Young (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Doo-Hyun (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Koo, Ja-Kyung (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 윤미혜 (한국기술교육대학교 응용화학공학과) ;
  • 권소영 (한국기술교육대학교 응용화학공학과) ;
  • 정유영 (한국기술교육대학교 응용화학공학과) ;
  • 조두현 (한국기술교육대학교 응용화학공학과) ;
  • 구자경 (한국기술교육대학교 응용화학공학과)
  • Received : 2010.07.26
  • Accepted : 2010.09.25
  • Published : 2010.09.30

Abstract

Porous poly(propylene) supported gel polymer electrolytes (GPE) were synthesized by thermal polymerization of DEGDMA [Di(ethylene glycol) dimethacrylate] in electrolyte solutions (1 M solution of $LiPF_6$ in EC/DEC 1 : 1 mixture) at $70^{\circ}C$. AC impedance spectroscopy and cyclic voltammetry were used to evaluate its ionic conductivity and electrochemical stability window of the GPE membranes. Lithium ion battery (LIB) cells were also fabricated with $LiNi_{0.8}Co_{0.2}O_2$/graphite and GPE membranes via thermal polymerization process. Through the thermal polymerization, self sustaining GPE membranes with sufficient ionic conductivities (over $10^{-3}\;S/cm$) and electrochemical stabilities. The LIB cell with 5% monomer showed the best rate-capability and cycleability.

다공성 Poly(propylene) 분리막의 지지 하에 전해질 용액 (EC/DEC 1 : 1 혼합물 내의 $LiPF_6$ 1 M 용액) 내에서 DEGDMA [Di(ethylene glycol) dimethacrylate]의 $70^{\circ}C$ 열중합을 통하여 겔 고분자 전해질(GPE)막이 합성 되었다. 합성된 겔 고분자 전해질막의 이온전도도 및 전기화학적 안정성은 AC 임피던스법 및 CV (cyclic voltametry)법에 의하여 측정 평가하였다. 겔 고분자를 전해질로, 그리고 양극 및 음극으로는 각각 $LiMi_{0.8}Co_{0.2}O_2$ 및 graphite로 이용하여 리튬이온전지(LIB)도 제작하였다. 열중합을 통하여 리튬 이온전지에 적합한 이온전도도($10^{-3}\;S/cm$ 이상) 및 전기화학적 안정성을 보이면서 자체적인 성상을 유지하는 겔 고분자 전해질막을 얻을 수 있었다. 단량체 함량 5%의 전구체로 제작한 겔 고분자 전지는 단량체 함량이 7.0% 및 10.0%인 경우에 비하여 우수한 고율 및 충-방전 효율을 보였다.

Keywords

Acknowledgement

Supported by : 한국기술교육대학교

References

  1. F. B. Dias, L. Plomp, and B. J. Veldhuis, "Trends in polymer electrolytes for secondary lithium batteries", J. Power Sources, 88(2), 169 (2000). https://doi.org/10.1016/S0378-7753(99)00529-7
  2. K. Murata, S. Izuchi, and Y. Yoshihisa, "An overview of the research and development of solid polymer electrolyte batteries", Electrochim. Acta, 45(8), 1501 (2000). https://doi.org/10.1016/S0013-4686(99)00365-5
  3. J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Nature, 414(6861), 359 (2001). https://doi.org/10.1038/35104644
  4. M. Wakihara, "Recent developments in lithium ion batteries", Mater. Sci. Eng., 33(4), 109 (2001). https://doi.org/10.1016/S0927-796X(01)00030-4
  5. H. Kim, J. Shinn, S. Moon, and M. Yoon, "Electrochemical performances of gel polymer electrolytes using tetra (ethylene glycol) diacrylate", Chem. Eng. Sci., 58(9), 1715 (2003). https://doi.org/10.1016/S0009-2509(03)00025-3
  6. H. Min, J. Ko, and D. Kim, "Preparation and characterization of porous polyacrylonitrile membranes for lithium-ion polymer batteries", J. Power Sources, 119, 151 (2003).
  7. B. Choi, Y. Kim, M. Gong, and S. Ahn, "Characterization of new polyacrylonitrile-co-bis [2-(2-methoxy) ethyl]itaconate based gel polymer electrolytes", Electrochim. Acta, 46(23), 3475 (2001). https://doi.org/10.1016/S0013-4686(01)00633-8
  8. H. R. Allcock, W. R. Laredo, and R. V. Morford, "Polymer electrolytes derived from polynorbornenes with pendent cyclophosphazenes: poly (ethylene glycol) methyl ether (PEGME) derivatives", Solid State Ionics, 139(1), 27 (2001). https://doi.org/10.1016/S0167-2738(00)00807-9
  9. H. Kuo, W. Chen, and T. Wen, "A novel composite gel polymer electrolyte for rechargeable lithium batteries", J. Power Sources, 110, 27 (2002). https://doi.org/10.1016/S0378-7753(02)00214-8
  10. Y. F. Zhou, S. Xie, and C. H. Chen, "In-situ thermal polymerization of rechargeable lithium batteries with poly (methyl methacrylate) based gelpolymer electrolyte", J. Mater. Sci., 41, 7492 (2006). https://doi.org/10.1007/s10853-006-0803-3
  11. L. X. Yuan, J. D. Piao, Y. L. Cao, and H. X. Yang, "Preparation and performance characterization of polymer Li-ion batteries using gel poly (diacrylate) electrolyte prepared by in-situ thermal polymerization", J. Solid State Electrochem., 9, 803 (2005).
  12. M.-J. Choi, C.-H. Shin, T. Kang, J.-K. Koo, and N. Cho, "A study on the organic/inorganic composite electrolyte membranes for dye sensitized solar cell", Membrane Journal, 18(4), 345 (2008).
  13. D.-H. Cho, Y.-Y. Chung, M. H. Yun, S.-Y. Kwon, and J.-K. Koo, "Effect of plasticizer on electrolyte membranes for dye sensitized solar cells", Membrane Journal, 20(1), 13 (2010).
  14. T. Kang, C.-H. Shin, M.-J. Choi, J.-K. Koo, and N. Cho, "A Study on the Ionic Conducting Characteristics of Electrolyte Membranes Containing KI and $I_2$ for Dye Sensitized Solar Cel", Membrane Journal, 20(1), 21 (2010).
  15. Y. Kang, K. Cheong, K. Noh, C. Lee, and D. Seung, "A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate; ionic conductivity and mechanical properties", J. Power Sources, 119, 431 (2003).
  16. H. Kim, J. Shin, S. Moon, and D. Oh, "A Study on Electrochemical Properties of Acrylate-based Gel Polymer Electrolyte with Acrylate Ethylene Oxide Group", J. Kor. Inst. Electrical & Electronic Mat. Eng., 13(4), 608 (2004).
  17. H. Kim, S. Moon, and S. Kim, "A Study on the Characteristics of Lithium-ion Polymer Battery with Composition of Crosslink-type Gel Polymer electrolyte", J. Kor. Electrochem. Soc., 7(4), 189 (2004). https://doi.org/10.5229/JKES.2004.7.4.189
  18. W. Kim, J, Cho, Y. Kang, and D. Kim, "Study on cycling performances off lithium-ion polymer cells assembled by in-situ chemical cross-linking with star-shaped siloxane acrylate", J. Power Sources, 178, 837 (2008). https://doi.org/10.1016/j.jpowsour.2007.07.050
  19. H. Kim, J. Shin, S. Moon, and D. Oh, "A Study on Electrochemical Properties of Acrylate-based Gel Polymer Electrolyte with Acrylate Ethylene Oxide Group", J. Kor. Inst. Electrical & Electronic Mat. Eng., 13(4), 608 (2004).
  20. H. Kim, S. Moon, and S. Kim, "A Study on the Characteristics of Lithium-ion Polymer Battery with Composition of Crosslink-type Gel Polymer electrolyte", J. Kor. Electrochem. Soc., 7(4), 189 (2004). https://doi.org/10.5229/JKES.2004.7.4.189
  21. W. Kim, J, Cho, Y. Kang, and D. Kim, "Study on cycling performances off lithium-ion polymer cells assembled by in-situ chemical cross-linking with star-shaped siloxane acrylate", J. Power Sources, 178, 837 (2008). https://doi.org/10.1016/j.jpowsour.2007.07.050