Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.2.131

Partially Carbonized Poly (Acrylic Acid) Grafted to Carboxymethyl Cellulose as an Advanced Binder for Si Anode in Li-ion Batteries  

Cho, Hyunwoo (Advanced Batteries Research Center, Korea Electronics Technology Institute)
Kim, Kyungsu (Advanced Batteries Research Center, Korea Electronics Technology Institute)
Park, Cheol-Min (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Jeong, Goojin (Advanced Batteries Research Center, Korea Electronics Technology Institute)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.2, 2019 , pp. 131-138 More about this Journal
Abstract
To improve the performance of Si anodes in advanced Li-ion batteries, the design of the electrode plays a critical role, especially due to the large volumetric expansion in the Si anode during Li insertion. In our study, we used a simple fabrication method to prepare Si-based electrodes by grafting polyacrylic acid (PAA) to a carboxymethyl cellulose (CMC) binder (CMC-g-PAA). The procedure consists of first mixing nano-sized Si and the binders (CMC and PAA), and then coating the slurry on a Cu foil. The carbon network was formed via carbonization of the binders i.e., by a simple heat treatment of the electrode. The carbon network in the electrode is mechanically and electrically robust, which leads to higher electrical conductivity and better mechanical property. This explains its long cycle performance without the addition of a conducting agent (for example, carbon). Therefore, the partially carbonized CMC-g-PAA binder presented in this study represents a new feasible approach to produce Si anodes for use in advanced Li-ion batteries.
Keywords
Silicon anode; Partially carbonized binder; Carbon polymer nanohybrid; Polyacrylic acid grafted to carboxymethyl cellulose; Lithium rechargeable battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, H.-J. Sohn, Energy Environ. Sci, 2011, 4(6), 1986-2002.   DOI
2 H. Wu, Y. Cui, Nano Today, 2012, 7(5), 414-429.   DOI
3 N. Nitta, F. Wu, J. T. Lee, G. Yushin, Materials Today, 2015, 18(5), 252-264.   DOI
4 C.K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat Nanotechnol. 2008, 3, 31-35.   DOI
5 S.-H. Ng, J. Wang, D. Wexler, K. Konstatinov, Z.-P Guo, H.-K Liu, Angewandte Chemie, 2006, 45(41) 6896-6899.   DOI
6 D. Mazouzi, Z. Karkar, C. R. Hernandez, P. J. Manero, D. Guyomard, L. Roue, B. Lestriez, J. Power Sources, 2015, 280, 533-549.   DOI
7 J. Choi, K. Kim, J. Jeong, K.Y. Cho, M.-H. Ryou, Y.M. Lee, Appl Mater. Interfaces, 2015, 7(27), 14851-14858.   DOI
8 D. Chao, X. Xia, J. Liu, Z. Fan, C. F. Ng, J. Lin, H. Zhang, Z.X. Shen, H. J. Fan, Adv. Mater. 2014, 26(33), 5794-5800.   DOI
9 H. Liu, F. Zhang, W. Li, X. Zhang, C.-S. Lee, W. Wang, Y. Tang, Electrochimica Acta, 2015, 167, 132-138.   DOI
10 J. Liu, W. Zhou, L. Lai, H. Yang, S. H. Lim, Y. Zhen, T. Yu, Z. Shen, J. Lin, Nano Energy 2013, 2(5), 726-732.   DOI
11 G. Chen, L. Yan, H. Luo, S. Guo, Adv. Mater. 2016, 28(35), 7580-7602.   DOI
12 P. Roy, S. K. Srivastava, J. Mater. Chem. A, 2015, 3(6), 2454-2484.   DOI
13 Y. Shi, G. Yu, Chem. Mater, 2016, 28(8), 2466-2477.   DOI
14 L. Wei, C. Chen, Z. Hou, H. Wei, Sci. Rep. 2016, 6, article number 19583.
15 R. Jain, B. K. Paswan, T. K. Mahto, V. Mahto, Egypt. J. Petrol. 2017, 26(4), 875-883.   DOI
16 S. Pongpiachan, J. Appl. Sci., 2014, 14(22), 2967-2977.   DOI
17 N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wohrle, C. Wurm, M. Winter, Electrochem. Solid-State Lett, 2008, 11(5), A76-A80.   DOI
18 T. M. Higgins, S.-H. Park, P. J. King, C. (J.) Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi, J. N. Coleman, ACS Nano, 2016, 10(3), 3702-3713.   DOI
19 M. -H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T.-S. Kim, J. -K. Park, H. Lee, J. W. Choi, Adv. Mater, 2013, 25(11), 1571-1576.   DOI