• 제목/요약/키워드: Lithium Ion Battery

검색결과 920건 처리시간 0.032초

기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성 (Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials)

  • 서진성;나병기
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.861-867
    • /
    • 2019
  • 차세대 리튬이차전지용 음극활물질로 각광을 받고있는 $Li_4Ti_5O_{12}$는 높은 수명특성, 낮은 비가역용량 그리고 충방전시 부피팽창이 거의 없는 물질이다. 하지만 낮은 전기전도도로 인하여 높은 전류밀도에서는 용량특성이 현저하게 낮아지는 단점을 가지고 있다. 이 문제점을 해결하기 위해 P123을 첨가한 졸-겔법으로 기공구조의 $Li_4Ti_5O_{12}$를 합성하였다. 제조된 샘플들의 물리적 특성을 분석하기 위해 XRD, SEM, BET를 사용하였고, 전기화학적 특성은 사이클테스트, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS)로 분석을 하였다. P123/Ti = 0.01mol의 비율로 만들어진 $Li_4Ti_5O_{12}$에서 가장 균일한 입자사이즈, 높은 비표면적, 그리고 상대적으로 높은 기공의 분포를 보였다. EIS분석 결과 기공구조의 $Li_4Ti_5O_{12}$의 경우 저항을 나타내는 반원의 크기가 현저하게 감소하였으며, 전극 내 저항값이 줄어들었음을 알 수 있었다. 율속 테스트결과 0.2C에서 178 mAh/g, 0.5C에서 170 mAh/g, 5C에서 110 mAh/g 그리고 10C에서 90 mAh/g의 용량을 유지하였고 용량회복율 또한 99%로 매우 우수하였다.

질화 처리된 LATP 고체전해질의 알칼라인 용액내에서의 내화학특성 개선 연구 (Nitrided LATP Solid Electrolyte for Enhanced Chemical Stability in Alkaline Media)

  • 성지영;이종원;임원빈;김성수;정규남
    • 전기화학회지
    • /
    • 제18권2호
    • /
    • pp.45-50
    • /
    • 2015
  • 본 연구에서는 리튬 이온 전도성 세라믹 고체전해질($Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$, LATP)의 알칼라인 용액 내에서의 화학적 안정성을 증가시키기 위하여, 고체전해질 표면을 질화 공정 처리를 통해 개질하였다. LATP 고체전해질의 화학적 안정성 및 전기화학 특성과 관련된 고체전해질 표면 형상 및 구조 특성 등을 X-선 회절법, X-선 광전자 분광법, 주사 전자 현미경 및 임피던스 측정을 통하여 분석하였다. 질화 처리된 LATP 시료를 30일간 알칼라인 용액에 담지하여, 표면 처리하지 않은 시료와 비교시 향상된 화학적 안정성을 나타냈으며, 이를 하이브리드 리튬-공기 전지에 적용하여 비교시 개선된 충방전 분극 및 효율 특성을 보였다. 이러한 결과를 바탕으로 질화 처리 공정을 통한 표면 개질은 알칼라인 용액내에서의 세라믹 고체전해질의 화학적 안정성을 증가시키는데 효과적으로 도움이 될 것으로 판단된다.

PAN-PVDF-PEGME Blend계 고분자전해질의 전기화학적 특성 (The Electrochemical Properties of PAN-PVDF-PEGME Blend Polymer Electrolyte System)

  • 류광선;이계중;류광경;강성구;장순호
    • 대한화학회지
    • /
    • 제43권2호
    • /
    • pp.199-205
    • /
    • 1999
  • PAN-PVDF-PEGME 블랜드(blend)계의 고분자전해질을 만들어 전기화학적인 특성을 조사하였으며 PEGME의 첨가에 따른 물성변화를 측정하였다. PEGME가 첨가되면서 PVDF의 결정성은 감소하고, 이온 전도도는 대부분 $∼10^{-3}S/cm$의 이온전도도를 나타내므로 고분자전해질로 사용이 가능하다. 또한 이온전도도의 온도의존성으로부터 PEGME의 첨가양이 증가할수록 효과적으로 높은 이온전도도를 갖는 통로가 생겨 이온전도도가 증가하는 것으로 예상할 수 있다. SPE 2(10 wt% PEGME)에서 가장 큰 양이온 수율을 나타내고 있으며 PEGME의 양이 증가할 수록 감소하는 것을 알 수 있다. PEGME를 첨가하지 않은 SPE 1(PAN-PVDF계) 고분자전해질의 전기화학적으로 안정한 영역은 ∼4.3 V인 반면에 PEGME를 첨가한 SPE 2-4(PAN-PVDF-PEGME계) 고분자전해질은 ∼4.6 V까지 전기화학적으로 안정한 것을 알 수 있다. 또한 이 고분자전해질을 사용하여 전지를 구성하여 충방전 성능을 비교하여 보면 PEGME를 첨가함에 따라 방전 용량이 증가함을 알 수 있다. 즉 PEGME를 첨가함에 따라 이온전도도가 증대되며, 전기화학적으로 안정한 영역이 넓어질뿐만 아니라 전지구성시 방전 성능도 향상됨을 알 수 있다.

  • PDF

휴대폰 배터리의 폭발 및 화재 위험성에 관한 실험적 연구 (Experimental Study on the Explosion and Fire Risks of Mobile Phone Batteries)

  • 이호성;김시국
    • 한국화재소방학회논문지
    • /
    • 제30권4호
    • /
    • pp.111-120
    • /
    • 2016
  • 본 논문은 휴대폰 배터리의 폭발 및 화재 위험성을 분석하기 위한 실험적 연구로서, 실험은 스마트폰 배터리로 사용되고 있는 리튬-이온 배터리를 대상으로 하여 사용상 부주의 또는 이상상태 등에서 폭발 및 화재가 발생될 가능성이 있는 과충전, 내부단락 및 외부단락 그리고 열충격에 의한 실험을 진행하였다. 리튬-이온 배터리는 과충전 및 외부단락 실험의 경우 보호회로가 정상적으로 작동될 때는 폭발 및 화재 위험성이 없었으나, 보호회로가 고장상태를 가정하였을 때 폭발 및 화재 위험성이 크게 나타났다. 내부단락 및 열충격 실험의 경우 충전상태에 따라 위험성에 차이가 나타났다. 즉, 완방전 상태에서는 폭발 및 화재 위험성이 낮았으나, 완충전 상태에서는 폭발 및 화재 위험성이 높게 나타나는 것을 확인할 수 있었다. 실험결과 휴대폰 배터리의 폭발 및 화재 위험성을 최소화하기 위해서는 보호회로 고장시 알람장치 및 배터리 케이스 강화 그리고 고온방지를 위한 냉각장치 등의 안전장치의 강화가 필요할 것으로 생각된다.

스피넬형 $Li_{4}Ti_{5}O_{12}$ 음극물질의 $Al^{3+}$ 첨가에 의한 전기화학적 성능 변화 (Effect of $Al^{3+}$ Dopant on the Electrochemical Characteristics Of Spinel-type $Li_{4}Ti_{5}O_{12}$)

  • 정충훈;이의경;방종민;이봉희;조병원;나병기
    • 청정기술
    • /
    • 제14권3호
    • /
    • pp.171-175
    • /
    • 2008
  • 본 연구에서는 첨가물이 전기화학적 성능에 미치는 효과를 알아보기 위해 실험변수로서 첨가물 $Al^{3+}$를 사용하였다. Zero-strain 삽입 혼합물로 알려진 $Li_{4}Ti_{5]O_{12}$$Al^{3+}$가 첨가된 $Li_{3.95}Al_{0.15}Ti_{4.9}O_{12}$를 high energy ball milling (HEBM)을 사용하여 고상반응으로 제조한 후에, $800,\;900,\;1000^{\circ}C$에서 열처리하여 시료를 제조하였다. 합성물질의 구조적 특성과 입자의 표면분석을 하기 위해 XRD (X-ray diffraction)와 SEM (scanning electron microscopy)을 사용하였으며, 이때의 입자의 분포는 대략 $0.2{\sim}0.6\;{\mu}m$ 정도로 측정되었다. 충/방전 실험은 $1.0{\sim}3.0 V$에서 하였으며, 가역용량, 사이클 안정성, 평탄 전압 등을 알아보았다. $Li_{3.95}Al_{0.15}Ti_{4.9}O_{12}$의 충방전 용량은 138 mAh/g이었다.

  • PDF

저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향 (Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries)

  • 황태경;김지홍;임지선;강석창
    • 공업화학
    • /
    • 제32권1호
    • /
    • pp.83-90
    • /
    • 2021
  • 본 연구에서는 저온 열처리 탄소의 물리·화학적 특성이 이차전지 음극재로서의 전기화학적 거동에 미치는 영향에 대하여 고찰하였다. 석유계 핏치의 코크스화를 위하여 600 ℃ 열처리를 수행하였으며 제조된 코크스는 700~1500 ℃로 탄화 온도를 달리하여 저온 열처리 탄소 음극재로 제조되었다. 탄소 음극재의 물리 화학적 특성은 N2 흡·탈착 등온선, X-ray diffraction (XRD), 라만 분광(Raman spectroscopy), 원소 분석 등을 통하여 확인하였으며,저온 열처리 탄소의 음극 특성은 반쪽 전지를 통한 용량, 초기 쿨롱 효율(ICE, initial Coulomb efficiency), 율속, 수명 등의 전기화학적 특성을 통하여 고찰하였다. 저온 열처리 탄소의 결정 구조는 1500 ℃ 이하에서 결정자의 크기와 진밀도가 증가하였으며 비표면적은 감소하였다. 저온 열처리 탄소의 물리화학적 특성 변화에 따라 음극재의 전기화학 특성이 변화하였는데 수명 특성은 H/C 원소 비, 초기 쿨롱 효율은 비표면적, 율속 특성은 진밀도의 특성에 기인하는 것으로 판단되었다.

리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성 (Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries)

  • 김수연;최승현;이은주;김점수
    • 전기화학회지
    • /
    • 제20권4호
    • /
    • pp.67-74
    • /
    • 2017
  • 층상구조의 Ni-rich NCM계 양극활물질 $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$)은 $LiCoO_2$ 대비 높은 에너지밀도와 가격 경쟁력의 장점을 가진다. Ni 함량에 비례하여 가역 방전용량이 증가하는 장점이 있는 반면, 합성 중에 발생하는 양이온 혼합으로 인해 안정적인 전기화학성능을 구현하기 어려운 문제가 있다. 본 연구에서는 합성 분위기, 리튬 원료물질, 합성 시간, 합성 온도, Li/M (M=transition metal) 비율 등의 다양한 합성조건을 변수로 하여 Ni 함량 증가에 따라 최적의 층상구조 Ni-rich NCM을 각각 합성하고 이에 대한 전기화학성능을 보고하였다. $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6)을 기준으로 Ni 함량이 증가한 $Li[Ni_{0.7}Co_{0.15}Mn_{0.15}]O_2$ (NCM7)와 $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8)의 합성시 전이금속 중 Ni의 비율이 증가함에 따라 양이온 혼합이 증가하는 것이 관찰되었고, 이는 전기화학 성능에 부정적인 영향을 끼치는 것으로 확인되었다. Ni 비율별 NCM에 대한 연구결과 비율 내확인한 최적의 조건에서 NCM6은 $180mAh{\cdot}g^{-1}$, 96.2% (50회), NCM7은 $187mAh{\cdot}g^{-1}$, 94.7% (50회), NCM8은 $201mAh{\cdot}g^{-1}$, 92.7% (50회)의 초기 방전용량 및 수명평가 후 용량유지율 값을 각각 구현하였다.

PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성 (Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC)

  • 현시철;나병기
    • 청정기술
    • /
    • 제24권1호
    • /
    • pp.77-84
    • /
    • 2018
  • 리튬이온전지의 음극활물질로 사용되는 $Li_4Ti_5O_{12}$를 건식 볼밀법으로 합성하였고, $Li_4Ti_5O_{12}$의 전기화학적 특성을 향상시키기 위하여 탄소소재인 polyvinyl chloride (PVC)를 첨가하였다. PVC는 $Li_4Ti_5O_{12}$를 합성하고 난 후에 첨가하였을 때 스피넬 구조를 갖는 물질이 잘 합성되었음을 X-ray diffraction (XRD) 실험으로 확인하였다. 합성하기 전에 탄소재를 첨가하여 열처리를 한 경우에는 탄소재가 미량 첨가되더라도 다른 결정구조의 물질이 합성되는 것을 확인할 수 있었다. 탄소재를 첨가하지 않은 $Li_4Ti_5O_{12}$의 경우 전기전도도 값이 약 $10{\mu}S\;m^{-1}$으로 부도체에 가까운 매우 작은 값을 보였다. 탄소를 첨가함에 따라서 전기전도도가 크게 향상되었으며, 압력을 증가시킬 경우에 최대 10,000배 이상 증가되었다. Electrochemical impedance spectroscopy (EIS) 분석결과 탄소를 첨가할 경우 저항에 해당하는 반원의 크기가 감소하였으며, 이는 전극내의 저항이 감소하였음을 보여준다. Cyclic voltammetry (CV) 분석에 의하면 탄소를 첨가할 경우에 산화피크와 환원피크의 전위차가 줄어 들었으며, 이는 리튬이온의 삽입과 탈리의 속도가 증가하였음을 의미한다. PVC를 9.5 wt% 첨가한 물질의 경우, 0.2 C-rate에서 $180mA\;h\;g^{-1}$, 0.5 C-rate에서 $165mA\;h\;g^{-1}$, 5C-rate에서 $95.8mA\;h\;g^{-1}$의 용량을 나타냄으로써 우수한 출력 특성을 보여주었다.

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu;Song, Shangbin;Xiang, Xing;Hu, Qing;Zhang, Chi;Xia, Ziwen;Xu, Yinghui;Zha, Wenping;Li, Junyang;Gonzale, Paulina Mercedes;Han, Young-Hwan;Chen, Fei
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구 (Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide)

  • 이종문;김주성;홍순기;이정진;안한철;조원일;모선일
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.172-180
    • /
    • 2012
  • 리튬이온전지의 양극소재인 $LiMn_2O_4$를 다양한 모양과 크기의 망간산화물 및 망간수산화물 전구체를 사용해서 합성하였다. 첫 번째 단계로 수열합성법이나 침전법을 사용하여 ${\alpha}-MnO_2$, ${\beta}-MnO_2$, $Mn_3O_4$, amorphous $MnO_2$$Mn(OH)_2$ 등의 전구체를 합성하였고, 두 번째 단계로 이들 전구체로부터 고상법을 사용하여 다양한 형태의 $LiMn_2O_4$를 제조하였다. 합성된 $LiMn_2O_4$의 특성은 주사전자현미경과 XRD Rietveld구조분석을 통해 확인하고, Li coin cell로 조립하여 전극특성을 측정하였다. 500 nm크기의 팔면체(nano-octahedron) $LiMn_2O_4$가 1 C-rate와 50 C-rate에서 각각 107 mAh $g^{-1}$, 99 mAh $g^{-1}$의 높은 전지용량을 나타내며, 다양한 방전전류에서 가장 우수한 전기화학적 특성을 보인다. 3차원 팔면체 결정입자가 1차원 막대모양이나 2차원 판상모양의 다른 형태의 $LiMn_2O_4$보다 구조적 안정성도 우수한 것으로 평가된다. 또한 10 C-rate의 높은 전류로 500회 충 방전이 진행된 후에도 nano-octahedron $LiMn_2O_4$는 단지 5%의 용량감소(95% capacity retention)로 우수한 전극특성을 나타냈다.