• Title/Summary/Keyword: Liquid-vaporized

Search Result 41, Processing Time 0.033 seconds

Evaluation of Exposure to Indoor Volatile Organic Compounds by Utilizing Emission Characteristics and Emission Factor of Household Mosquito Repellents (가정용 모기살충제의 배출 특성 및 배출계수를 이용한 실내 휘발성 유기화합물질 노출 평가)

  • Jo, Wan-Kuen;Lee, Jong-Hyo
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1123-1134
    • /
    • 2009
  • This study was designed to evaluate qualitatively and quantitatively the pollutant compositions, which were emitted from three types of mosquito repellents(MRs)(mat-, liquid-vaporized, and coil-type) by utilizing a 50-L environmental chamber. A qualitative analysis revealed that 42 compounds were detected on the gas chromatography/mass spectrometer system, and that the detection frequency depended upon chemical types. Nine of the 42 compounds exhibited a detection frequency of 100%. Four aromatic compounds(benzene, ethyl benzene, toluene, and xylene) were detected in all test MRs. The concentration equilibriums in the environmental chamber were achieved within 180 min after sample introduction. The coil-type MR represented higher chamber concentrations as compared with the mat- or liquid-vaporized-type MR, with respect to the target compounds except for naphthalene. In particular, the chamber concentrations of ethyl benzene, associated with the use of coil-type MR, were between 0.9 and $65\;mg\;m^{-3}$ whereas those of mat- and liquid-vaporized-type MRs we~e between 0.5 and $2.0\;mg\;m^{-3}$and 0.3 and $1.4\;mg\;m^{-3}$, respectively. However, naphthalene concentrations in the chamber, where a liquid-vaporized-type MR was placed, were measured as between 17.8 and $56.3\;mg\;m^{-3}$, but not detected in the chamber, where a mat- or coil-type MR was placed. The empirical model fitted well with the time-series concentrations in the environmental chamber(in most cases, determination coefficient, $R^2$ ≿ 0.9), thereby suggesting that the model was suitable for testing emissions. In regards to the target compounds except for benzene, although they were emitted from the MRs, health risk from individual exposure to them were estimated not to be significant when comparing exposure levels with no observed adverse exposure levels or lowest observed adverse exposure levels of corresponding compounds. However, it was concluded that the use of MRs could be an important indoor source as regards benzene.

Intake Valve Temperature Effect on the Mixture Preparation in a SI Engine During Warm-up

  • 신영기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.51-66
    • /
    • 1997
  • A heat transfer model of the intake valve in a spark ignition engine is presented, which is calibrated with a number of the valve temperature profiles measured during engine warm-up for the gaseous fuel(propane). The valve is divided into four identical elements for which the assumption of lumped thermal mass is applied. The calibration is made so that the difference between the measued and simulated valve temperatures becomes minimal. Then the model is applied to the cases of the liquid fuel(indolene) to estimate the amount of the liquid fuel vaporized from the intake valve by assuming that fuel evaporation accounts for the deficit of the heat balance budget. The results of the model show quantitative contribution of each heat transfer source to the heat balance. The behavior of the calculated mass fraction of the fuel vaporized from the intake valve explains how the liquid fuel evaporate during engine warm-up. The mass fraction at warmed-up condition is closely related with the fraction directly targeted on the valve back by the fuel spray geometry.

  • PDF

Behavior of Liquid Nitrogen in the Cryogenic Storage Tank (초저온액화가스 저장탱크 내에서의 액화질소의 거동)

  • Park Byung Whee;Lee Hyun Chul;Park Doo Seon;Son Moo Ryong
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.37-48
    • /
    • 1998
  • A cryogenic liquid stored in the closed cryogenic tank has been studied at various liquid levels. The change of pressure, temperature, and liquid-vapor ratio in the tank depended on the liquid levels. The various phenomena were shown at different liquid levels as follows: (1) liquid level was increased with condensation of vapor: (2) liquid was vaporized in spite of liquid level going up for a certain initial period and then condensation of vapor occurred at higher pressure; (3) liquid was vaporized without liquid level change; (4) liquid was vaporized with liquid level decreasing. If the tank is full with cryogenic liquid, it is extremely dangerous because of soaring the pressure. Therefore the tank must be filled with $90\%$ liquid according to the safety rules. If the tank was filled with $0\%$ ullage, the pressure increment as high as 80bar during first 5 days. With $90\%$ liquid level, however, the pressure was increased as low as 1.5bar in the same period. No matter what the liquid level is, it is very dangerous if the tank is locked-up with filled cryogenic liquid for a long time.

  • PDF

Investigation of Vaporized Kerosene Injection in a Supersonic Model Combustor

  • Yu, G.;Li, J.G.;Lu, X.N.;Chang, X.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.79-84
    • /
    • 2004
  • This paper report our preliminary results of characterizing the jet structures of kerosene injection into quiescent atmosphere and a Mach 2.5 crossflow at various preheat temperature. A heating system has been designed and tested that can prepare heated kerosene of 0.8 kg up to 670 K at a pressure of 5.5 ㎫. Temperature measurement near the injector shows that the temperature of pressurized kerosene can be kept constant during the experimental duration. Comparison of kerosene jet structures in the preheat temperature range of 290-550 K demonstrates that with injection pressure of 4 ㎫ the jet plume turns into vapor phase completely at injection temperature of 550 K, while keeping the penetration depth essentially unchanged. The results suggest that the injection of vaporized fuel would improve the performance of a liquid hydrocarbon-fueled supersonic combustor because the evaporation process is now omitted.

  • PDF

Quality Characteristics of the Vaporized Liquid of Water-boiled Pine Needle (솔잎 열수 증류액의 품질특성)

  • Lee, Hyo-Jin;Cui, Cheng-Bi;Choi, Hyung-Taek;Kim, Soo-Hyun;Ham, Young-An;Lee, Deuk-Sik;Ham, Seung-Shi
    • Food Science and Preservation
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2005
  • We investigated the quality of vaporized liquid of water-boiled pine needle in the aspects of drinking conformity and aroma characteristics. As a result, there was no hazardous component in the assessment for 45 types of ingredients. Especially, inorganic components such as arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) which are harmful to human body were not detected. Additionally, we observed that other ingredients were present within the standard level suitable for drinking. The total 34 volatile components of the vaporized liquid of water-boiled pine needle were identified by dynamic head-space method. Fenchol, bomeol $\beta-fenchyl$ alcohol and bomyl acetate were the major volatiles and composed of 6.7, 13.1, 26.6 and $16.2\%$ of total volatiles, respectively. In addition, the alcohols and aldehydes were the prominent ingredients of which the contents showed comparatively high.

Comparison of the Internal Pressure Behavior of Liquid Hydrogen Fuel Tanks Depending on the Liquid Hydrogen Filling Ratio (액체수소 충전 비율에 따른 액체수소 연료탱크의 내부 압력 거동 비교)

  • Dongkuk Choi;Sooyong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 2024
  • Because hydrogen has very low density, a different storage method is required to store the same amount of energy as fossil fuel. One way to increase the density of hydrogen is through liquefaction. However, since the liquefied temperature of hydrogen is extremely low at -252 ℃, it is easily vaporized by external heat input. When liquid hydrogen is vaporized, a self-pressurizing phenomenon occurs in which the pressure inside the hydrogen tank increases, so when designing the tank, this rising pressure must be carefully predicted. Therefore, in this paper, the internal pressure of a cryogenic liquid fuel tank was predicted according to the liquid hydrogen filling ratio. A one-dimensional thermodynamic model was applied to predict the pressure rise inside the tank. The thermodynamic model considered heat transfer, vaporization of liquid hydrogen, and fuel discharging. Finally, it was confirmed that there was a significant difference in pressure behavior and maximum rise pressure depending on the filling ratio of liquid hydrogen in the fuel tank.

An experimental study on the mixing of evaporating liquid spray in a duct flow (덕트 유동에서 증발을 수반하는 액상 스프레이의 혼합 특성에 대한 실험적 연구)

  • Kim, Y.B.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.30-38
    • /
    • 2006
  • High temperature furnaces such as power plant and incinerator contribute considerable part of NOx generation and face urgent demand of De-NOx system. Reducing agent is injected into the flue gas flow to activate do-NOx system. Almost SCR system adopt vaporized ammonia injection system. Vaporizer, dilution system and additional space are needed to gasify and inject ammonia. Liquid spray injection system can simplify and economize post-treatment system of flue gas. In this study, mixing caused by gas or liquid injection of reducing agent into flue gas duct was investigated experimentally. Carbonated water was used as tracer and simulated agent and mixing of liquid spray in a duct flow was studied. To achieve that, the angle of attack of static mixer is simulated and $CO_2$ concentration is measured.

  • PDF

Biological Activities of the Vaporized Liquid of Water-boiled Pine Needle (솔잎 열수 증류액의 생리활성 효과)

  • Lee Hyo-Jin;Cui Cheng-Bi;Choi Hyung-Taek;Kim Soo-Hyun;Ham Young-An;Lee Deuk-Sik;Ham Seung-Shi
    • Food Science and Preservation
    • /
    • v.12 no.2
    • /
    • pp.179-183
    • /
    • 2005
  • This study was performed to determine the antioxidative, antimutagenic, and anticancer effects of vaporized liquid of water-boiled pine needle(VLP) using DPPH free radical donating method, Ames test, and cytotoxicity. VLP showed the highest electron donating activities $(18.4\;{\mu}L)$. The inhibition rate of VLP $(200\;{\mu}L/plate)$ in the Salmonella. typhimurium TA100 strain showed $45.9\%$ inhibition against the mutagenesis induced by MNNG. In addition, the suppression of with same concentration of VLP in the S. typhimurium TA100 strains showed $85.5\%$ inhibition against 4NQO, respectively. The suppressions under the same condition against Trp-P-1 in the TA98 and TA100 strains were $91.0\%$ and $62.1\%$, respectively. The cytotoxic effects of VLP against the cell lines with human lung carcinoma (A549), human hepatocellular carcinoma (HepG2) , human gastric carcinoma (AGS), human breast adenocarcinoma (MCF-7) and human cervical adenocarcinoma (HeLa) were inhibited with increase of the VLP concentration. The treatment of $50\;{\mu}L/well$ VLP showed strong cytotoxicities of $78.7\%,\;90.3\%,\;90.8\%,\;62.3\%$ and $93.7\%$ against A549, HepG2, AGS, MCF-7 and HeLa, respectively.

Rotating helium-recondensing system using Roebuck refrigerator (Roebuck 냉동기를 응용한 회전형 헬륨 재응축 장치)

  • 정상권;이창규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.464-471
    • /
    • 1999
  • This paper describes a design of the helium-recondensing system utilizing cascade Roebuck refrigerators. Superconducting generator or motor has the superconducting field winding in its rotor that should be continuously cooled by cryogen. Since liquid helium transfer from the stationary system to the rotor is problematic, cumbersome, and inefficient, the novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and expanded sequentially in cascade refrigerators until the helium is recondensed at 4.2K. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the key design parameters. The loss mechanisms are also explained to identify entropy generation that degrades the performance of the system.

  • PDF

Fabrication of a Micro Scent Injector (초소형 향 분사 모듈의 제작)

  • Park, Tae-Gyu;Yang, Sang-Sik;Kim, Yeong-Sik;Lee, Sang-U
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.633-638
    • /
    • 2001
  • The paper presents the fabrication and test of a micro scent injector module. A micro scent injector module consists of an injector fabricated by micromachining, a scent cartridge and a controller. If a scent injection signal triggers the controller, it heats the scent liquid in the injector chamber and a scent liquid is vaporized. The increased vapor pressure opens a normally closed boss valve, and the scent vapor is injected through the opened nozzle. The liquid volume injected by the fabricated module is about $1\muell$ for one second at 2 W.

  • PDF