• Title/Summary/Keyword: Liquid velocity

Search Result 1,066, Processing Time 0.025 seconds

Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control

  • Wang, Chenglong;Zhang, Yan;Zhang, Dalin;Lan, Zhike;Tian, Wenxi;Su, Guanghui;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2221-2228
    • /
    • 2021
  • One-dimensional oxygen transport relation is indispensable to study the oxygen distribution in the LBE-cooled system with an oxygen control device. In this paper, a numerical research is carried out to study the oxygen transport characteristics in a gas-phase oxygen control device, including the static case and dynamic case. The model of static oxygen control is based on the two-phase VOF model and the results agree well with the theoretical expectation. The model of dynamic oxygen control is simplified and the gas-liquid interface is treated as a free surface boundary with a constant oxygen concentration. The influences of the inlet and interface oxygen concentration, mass flow rate, temperature, and the inlet pipe location on the mass transfer characteristics are discussed. Based on the results, an oxygen mass transport relation considering the temperature dependence and velocity dependence separately is obtained. The relation can be used in a one-dimensional system analysis code to predict the oxygen provided by the oxygen control device, which is an important part of the integral oxygen mass transfer models.

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

Study on Ammonia Uniformity and DeNOx Analysis in the Urea-SCR System for Construction Machinery (건설기계용 Urea-SCR 시스템의 촉매전단에서 암모니아 균질도 해석 및 DeNOx 성능에 관한 연구)

  • Kim, Donghwan;Park, Junkyu;Kang, Joung-ho;Moon, Seonjoon;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.51-57
    • /
    • 2019
  • In this study, the spray atomization characteristics of urea injector used in SCR system for construction machinery was analyzed, and the uniformity index at the front of mixer and NOx conversion efficiency were evaluated through numerical analysis. Spray visualization and droplet size/velocity measurement were performed and the measured results were used to verify the spray analysis model to calculate the uniformity index in the exhaust gas after-treatment system. For the flow analysis, STAR-CCM, a three-dimensional CFD, was used and the uniformity index of the SCR system at the front of the mixer was calculated using the droplet dissociation model and the wall collision model. Finally, the DeNOx performance for the average condition of the NRTC driving mode was calculated to understand the NOx conversion efficiency reflecting the exhaust gas temperature. The simulation results show that the uniformity index at the front of mixer was calculated as 0.862 and DeNOx efficiency was 75.9%.

A Comparative Analysis for the Performance of 200 N-class Gaseous Methane-Liquid Oxygen Small Rocket Engine According to the Characteristic Length Variation (특성길이 변화에 따른 200 N급 기체메탄-액체산소 소형로켓엔진의 성능 비교 분석)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Ground hot-firing tests were conducted to analyze the combustion performance according to the characteristic lengths 1.37 m, 1.71 m, and 2.06 m of the combustion chamber in 200 N-class GCH4-LOx small rocket engine. Thrust, specific impulse, and characteristic velocity at the steady-state could be obtained as the key performance parameters of the rocket engine. The performance characteristics acquired through the test were compared and analyzed with the theoretical performance calculated from CEA analysis. Observation of the influence of characteristic length on the combustion performance indicates that an optimal characteristic length shall remain between 1.71 m and 2.06 m.

Numerical study on pressure drop with moving contact lines of dry slug flow in a hydrophobic minichannel (소수성 미니채널 내 움직이는 접촉선을 가진 액체슬러그의 압력 강하에 대한 수치해석)

  • Jeon, Jun Ho;Park, Su Chung;Yu, Dong In;Kim, Tae Hun;Lee, Yeon Won
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.116-121
    • /
    • 2020
  • In this study, a single-phase analysis of droplet slug with different contact angles was performed based on the visualization of experimental results. Droplet slug - flowing between gases in a hydrophobic mini channel - moves with a triple contact line without a gas liquid film on the wall. The results show that the rotational flow inside the droplet occurred; this was compared and verified with the results of two-phase analysis. The pressure field shows pressure rise at the front and rear ends. The effective length - the section that satisfies the laminar flow condition - became shorter as the droplet velocity increased. The Choi's correlation for the effective length agrees with this analysis results with a slight difference. This difference is judged as the difference in the contact angle of the slug model.

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

Anti-slosh effect of a horizontal porous baffle in a swaying/rolling rectangular tank: Analytical and experimental approaches

  • George, Arun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.833-847
    • /
    • 2021
  • The horizontal porous baffle and its effect as an anti-slosh device have been investigated intensively in a swaying and rolling rectangular tank. To accurately assess the level at which porous baffles reduce liquid sloshing, the Matched Eigenfunction Expansion Method (MEEM) has been utilized as an analytical tool. The velocity potentials in the horizontal baffle-covered fluid region are expressed by the sum of the homogeneous and particular solutions to avoid solving the complex dispersion equation. By applying an equivalent linearized quadratic loss model, the nonlinear algebraic equation is derived and solved by implementing the Newton-Raphson iterative scheme. To prove the validity of the present theoretical model, a series of experiments have been conducted with different centered horizontal porous baffles with varying porosities and submerged depths in a swaying and rolling rectangular tank. Reasonably good agreements are obtained regarding the analytical solutions and the experiment's findings. The influence of porosity, submerged depth, and length of a centered horizontal porous baffle on anti-slosh performance have been analyzed, especially at resonance modes. The developed predictive tool can potentially provide guidelines for optimal design of the horizontal porous baffle.

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.

Study on Effects of Pressure Ratio on the Wall-impingement Spray Characteristics of Nitrogen Gas using CNG Injector

  • Pham, Quangkhai;Chang, Mengzhao;Choi, Byungchul;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, an experimental investigation on the effects of the pressure ratio on the wall-impingement spray characteristics of nitrogen gas using a compressed natural gas (CNG) injector was conducted. The transient development of the impingement spray was recorded by a high speed camera with Z-type Schlieren visualization method. The spray behavior under various pressure ratio conditions were analyzed. The experimental results showed that the pressure ratio has positive effect on the development of spray wall-impingement. The effects of the above factor were evaluated in a constant volume chamber at atmospheric conditions. The data from test showed that, with the increase of the pressure ratio, the spray tip penetration (STP) quickly increases before the impingement and gradually increases after the impingement. Additionally, the spray velocity first increases and then sharply decreases on regardless of the injection pressure level. As the spray spreading angle increases, spray area and volume increases rapidly with the increase in STP at the beginning of injection, and finally entered a stable range, has a great correlation with the increase of pressure ratios.

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh ;Hyunwoo Baek ;Kang-Heon Lee ;Dae-Sic Jang;Jihyun Jun ;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2642-2649
    • /
    • 2023
  • A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.