• Title/Summary/Keyword: Liquid uptake

Search Result 119, Processing Time 0.024 seconds

An Experimental Study on the Treatment of Organic Wastewater by Soil Microbes Using Three-phase Fluidized Bed (삼상유동층 반응기에서 토양미생물에 의한 유기성 폐수처리에 관한 연구)

  • Choung, Youn Kyoo;Chun, Yang Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.207-217
    • /
    • 1992
  • In this study, isolated and cultured nitrogen fixed microbes were seeded in the three-phase fluidized bed in which gas, solid and liquid were contacted directly. Input velocity was varied from 8.12 cm/hr to 16.32 cm/hr. And upflow gas pressure was fixed to 80 psi. Return ratios were from 0.2 to 0.6 with the each experimental condition. According to these condition, movement of media, growth of biofilm and removal efficiency were measured. As the results, in case of briquette ash, biofilm was developed to $170{\mu}m$ when velocity was 8.12 cm/hr and return ratio was 0.6. In this condition, COD removal efficiency was 97% and $NH_4$-N removal efficiency was 83%. At the same condition, biofilm thickness of glass bead was $17.59{\mu}m$ and its COD and $NH_4$-N removal efficiency was 83% and 72%. Nitrogen fixed microbes have following characters: it formed dark-brownish sludge, excellent adhesive force, easy solid-liquid separation and low oxygen uptake ratio, but sensitive to DO concentration. Not only it endured shock loading, but required short time to steady state.

  • PDF

Molecular Mechanism of Macrophage Activation by Exopolysaccharides from Liquid Culture of Lentinus edodes

  • Lee, Ji-Yeon;Kim, Joo-Young;Lee, Yong-Gyu;Rhee, Man-Hee;Hong, Eock-Ki;Cho, Jae-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.355-364
    • /
    • 2008
  • Mushrooms are regarded as one of the well-known foods and biopharmaceutical materials with a great deal of interest. ${\beta}$-Glucan is the major component of mushrooms that displays various biological activities such as antidiabetic, anticancer, and antihyperlipidemic effects. In this study, we explored the molecular mechanism of its immunostimulatory potency in immune responses of macrophages, using exopolysaccharides prepared from liquid culture of Lentinus edodes. We found that fraction II (F-II), with large molecular weight protein polysaccharides, is able to strongly upregulate the phenotypic functions of macrophages such as phagocytic uptake, ROS/NO production, cytokine expression, and morphological changes. F-II triggered the nuclear translocation of NF-${\kappa}B$ and activated its upstream signaling cascades such as PI3K/Akt and MAPK pathways, as assessed by their phosphorylation levels. The function-blocking antibodies to dectin-1 and TLR-2, but not CR3, markedly suppressed F-II-mediated NO production. Therefore, our data suggest that mushroom-derived ${\beta}$-glucan may exert its immunostimulating potency via activation of multiple signaling pathways.

Quantiflcation of Human Exposure and Analysis of PCBs in Contaminated Some Site (특정지역에서 토양중 PCB의 분석과 인체노출량평가)

  • 이효민;박송자;김명수;윤은경;최시내;김선태;박종세
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.49-54
    • /
    • 1997
  • PCBs are classified as B2 (Probable human carcinogen) based on the induction of hepatocellular carcinomas in rats and mice from IRIS (Integrated Risk Information System). About 20 years ago, PCBs were phased out for electrical use in Korea, but PCBs were continuously used in the other field. Lately, there has been increasing concern on possible effects of contaminated soil to the other environment and human health. The purpose of this study is to determine PCBs level in soil at some site and to assess the human exposure doses according to exposure routes for people living within sites which expected to be exposed to PCBs. Pollution level of PCBs on the site was monitored using gas liquid chromatography. To assess the transport of PCBs in soil to plant and to air, various transfer factors(diffusion coefficient, bioconcentration factor etc.) were considered in simple calculations. To calculate the residential exposure doses by routes, some equations were considered using assumption value, which define inhalation, ingestion (soil, plant) and derreal uptake pathway. Computated results will be used as risk assessment information for human health evaluation on contaminated soil.

  • PDF

An Investigation for the Adsorption of Heavy Metal Ions by Polyamine Organic Adsorbent from the Aqueous Solution - The Influence of Molecular Weight and Degree of Deacetylation of Chitosan - (수용액 중에서 Polyamine계 유기응집제를 이용한 중금속 이온의 흡착 - 키토산의 분자량과 탈아세틸화도 -)

  • Park, Young-Mi;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.458-464
    • /
    • 2006
  • The adsorption ability of heavy metal ions from the aqueous solution by chitosan, which it is well known natural biopolymer, has been investigated. The fundamental study in this research is focusing on the physicochemical adsorption utilizing the chitosan as a organic chelating adsorbent, adsorb especially heavy metal ions from the waste liquid solution. The adsorption ability of the chitosan between metal ions, having different characteristics with Mw of 188,600, 297,200, and 504,200 g/mol and degree of deacetylation (DD) of 86.92% and 100% were investigated targeting on the $Ni^{2+}$, $Co^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ ions, respectively. The uptake of heavy metal ions with chitosan was performed by atomic absorption flame emission spectrophotometer (AAS) as conducted residual metal ions. It was found that chitosan has an strong adsorption capacity for some metals under certain conditions. Chitosan, which have 100% degree of deacetylation showed high adsorption recovery ratio and have an affinity for all kinds of heavy metals. In contrast, the molecular weight of chitosan was not completely affected on metal ion adsorption.

Structural Characteristics of Immunostimulating Polysaccharides from Lentinus edodes

  • Lee, Hee-Hwan;Lee, Jong-Seok;Cho, Jae-Yeol;Kim, Young-Eon;Hong, Eock-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.455-461
    • /
    • 2009
  • There is a significant amount of experimental evidence suggesting that polysaccharides from mushrooms enhance the host immune system by activating various mechanisms in immune cells, including macrophages. In this study, polysaccharides from Lentinus edodes were found to stimulate the functional activation of macrophages to secrete inflammatory mediators and cytokines and increase the phagocytotic uptake. The chemical properties of the stimulatory polysaccharides, CPFN-G-I, CPBN-G, and CPBA-G, were determined based on their monosaccharide composition, which mainly consisted of glucose and mannose. According to FT-IR and GC/MS, the structure of CPFN-G-I, purified from the fruiting body of L. edodes, was found to consist of a $\beta$-1,6-branched-$\beta$-1,4-glucan, whereas CPBN-G and CPBA-G, purified from the liquid culture broth, were found to be composed of a heteromannan. The configuration of the p-linkage and triple helical conformation of each polysaccharide were confirmed using a Fungi-Fluor kit and Congo red, respectively.

Direct radio-iodination of folic acid for targeting folate receptor-positive tumors

  • Huynh, Phuong Tu;Lee, Woonghee;Ha, Yeong Su;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • The folate receptor (FR) is a promising cell membrane-associated target for nuclear imaging of various cancers (via imaging $FR-{\alpha}$) and potentially also inflammatory diseases (via imaging $FR-{\beta}$), through the use of folic acid-based radioconjugates. However, there have been several drawbacks of previously reported radioconjugates, such as a short half-life of the radiolabel ($^{68}Ga\;t_{1/2}$ 68 min), a complex and time-consuming multistep radiosynthesis, and a high renal uptake of radiolabeled folate derivatives. The goal of this study was to develop an imaging probe by directly labeling folate with radioactive iodine without using an extra prosthetic group. The radiolabeling of folate was optimized using various labeling conditions and the labeled tracers were isolated by high-performance liquid chromatography. The in vitro stability of labeled folate was checked in phosphate-buffered saline and serum. The tumor-targeting efficacy of the probe was also evaluated by biodistribution studies using a murine 4T1 tumor model.

Chitosan-Coated Fe3O4 Magnetic Nanoparticles as Carrier of Cisplatin for Drug Delivery

  • Arum, Yosefine;Oh, Yun-Ok;Kang, Hyun Wook;Ahn, Seok-Hwan;Oh, Junghwan
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.89-98
    • /
    • 2015
  • A synthesis method for a chitosan-coated magnetic drug-delivery system of cisplatin is proposed. Here, cisplatin was conjugated to the surface of Magnetite ($Fe_3O_4$) nanoparticles via a (3-Aminopropyl)-trimethoxysilane (APTS) coupling agent. To reduce the cytotoxic effect of cisplatin, the magnetic drug was then encapsulated in chitosan (CS-cisplatin-$Fe_3O_4$) through the water/oil (W/O) emulsion method. The CS-cisplatin-$Fe_3O_4$ nanoparticles were synthesized in a spherical shape with a diameter of 190 nm. The cytotoxicity assay was performed using HeLa cells. The cisplatin uptake of the cells was determined using High Performance Liquid Chromatography (HPLC) to calculate the drug content. The controlled release of cisplatin was demonstrated by regulating the dissolution and diffusion of the drug through the chitosan matrix.

Chromium(III) recovery from tanning wastewater by adsorption on activated carbon and elution with sulfuric acid

  • Hintermeyer, Blanca H.;Tavani, Eduardo L.
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.149-156
    • /
    • 2017
  • Chromium(III) recovery from tanning wastewater by means of adsorption on activated carbon and elution with sulfuric acid was studied. Tests were carried out at laboratory scale on an effluent of industrial origin. Initially, proteinaceous materials and fats were separated via sieving followed by ultrafiltration. The chemical composition of the sample thus precleansed was (in g/L): 1.09 chromium(III); 10.36 sulfate; 11.10 sodium; 9.57 chloride; 0.40 proteinaceous materials; and 0.20 fats. Adsorptions were made at 20, 30, and $40^{\circ}C$, establishing what temperature favored chromium(III) uptake. At $40^{\circ}C$, the maximum cation fixation was 40.2 mg/g, and the lowest content in an equilibrium solution was 3.9 mg/L. As regards sodium, chloride, and sulfate, the concentrations before and after the treatment were similar. Likewise, it was found that protons were also retained, modifying the pH of the liquid medium. Adsorption isotherms were analyzed using the Langmuir, Temkin, and Freundlich models. Finally, the extraction of the adsorbed tanning agent with sulfuric acid was evaluated. A recovery of 96.5% was achieved with 0.9 N at $70^{\circ}C$ (13.23 g/L $Cr^{3+}$; 42.98 g/L sulfate; and 0.40 g/L NaCl).

Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere

  • Hussein, Khalid Abdallah;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.105-113
    • /
    • 2019
  • Although siderophore compounds are mainly biosynthesized as a response to iron deficiency in the environment, they also bind with other metals. A few studies have been conducted on the impact of heavy metals on the siderophore-mediated iron uptake by microbiome. Here, we investigated siderophore production by a variety of rhizosphere fungi under different concentrations of $Zn^{2+}$ ion. These strains were specifically isolated from the rhizosphere of Panax ginseng (Korean ginseng). The siderophore production of isolated fungi was investigated with chrome azurol S (CAS) assay liquid media amended with different concentrations of $Zn^{2+}$ (50 to $250{\mu}g/ml$). The percentage of siderophore units was quantified using the ultra-violet (UV) irradiation method. The results indicated that high concentrations of $Zn^{2+}$ ion increase the production of siderophore in iron-limited cultures. Maximum siderophore production by the fungal strains was detected at $Zn^{2+}$ ion concentration of $150{\mu}g/ml$ except for Mortierella sp., which had the highest siderophore production at $200{\mu}g/ml$. One potent siderophore-producing strain (Penicillium sp. JJHO) was strongly influenced by the presence of $Zn^{2+}$ ions and showed high identity to P. commune (100% using 18S-rRNA sequencing). The purified siderophores of the Penicillium sp. JJHO strain were chemically identified using UV, Fourier-transform infrared spectroscopy (FTIR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) spectra.

Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis

  • Moon, Keumok;Lee, Seola;Park, Hyunsu;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1692-1700
    • /
    • 2021
  • Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.