Browse > Article
http://dx.doi.org/10.4491/eer.2016.070

Chromium(III) recovery from tanning wastewater by adsorption on activated carbon and elution with sulfuric acid  

Hintermeyer, Blanca H. (Facultad de Ingenieria y Ciencias Agropecuarias (FICA) de la Universidad Nacional de San Luis)
Tavani, Eduardo L. (Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, CONICET)
Publication Information
Environmental Engineering Research / v.22, no.2, 2017 , pp. 149-156 More about this Journal
Abstract
Chromium(III) recovery from tanning wastewater by means of adsorption on activated carbon and elution with sulfuric acid was studied. Tests were carried out at laboratory scale on an effluent of industrial origin. Initially, proteinaceous materials and fats were separated via sieving followed by ultrafiltration. The chemical composition of the sample thus precleansed was (in g/L): 1.09 chromium(III); 10.36 sulfate; 11.10 sodium; 9.57 chloride; 0.40 proteinaceous materials; and 0.20 fats. Adsorptions were made at 20, 30, and $40^{\circ}C$, establishing what temperature favored chromium(III) uptake. At $40^{\circ}C$, the maximum cation fixation was 40.2 mg/g, and the lowest content in an equilibrium solution was 3.9 mg/L. As regards sodium, chloride, and sulfate, the concentrations before and after the treatment were similar. Likewise, it was found that protons were also retained, modifying the pH of the liquid medium. Adsorption isotherms were analyzed using the Langmuir, Temkin, and Freundlich models. Finally, the extraction of the adsorbed tanning agent with sulfuric acid was evaluated. A recovery of 96.5% was achieved with 0.9 N at $70^{\circ}C$ (13.23 g/L $Cr^{3+}$; 42.98 g/L sulfate; and 0.40 g/L NaCl).
Keywords
Activated carbon; Adsorption-elution; Chromium; Langmuir-Temkin-Freundlich models; Tanning wastewater;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 LaGrega MD, Buckingham PL, Evans JC. Hazardous waste management. New York: McGraw-Hill; 1994.
2 Committee on Biologic Effects of Atmospheric Pollutants. Chromium. Washington D.C.: National Academy of Sciences; 1974.
3 Nikagolla C, Chandrajith R, Weerasooriya R, Dissanayake CB. Adsorption kinetics of chromium(III) removal from aqueous solutions using natural red earth. Environ. Earth Sci. 2013;68:641-645.   DOI
4 Lopez Munoz BE, Rivera Robles R, Iturbe Garcia JL, Olguin Gutierrez MT. Adsorption of basic chromium sulfate used in the tannery industries by calcined hydrotalcite. J. Mex. Chem. Soc. 2011;55:137-141.
5 Guan Q, Wu D, Lin Y, et al. Application of zeolitic material synthesized from thermally treated sediment to the removal of trivalent chromium from wastewater. J. Hazard. Mater. 2009;167:244-249.   DOI
6 Keith LH (Editor). Compilation of EPA's sampling and analysis methods, 2nd ed. Boca Raton, Florida: CRC Press Inc; 1996. p. 454-456.
7 Greenberg AE, Clesceri LS, Eaton AD. Standard methods for the examination of water and wastewater. 18th ed. Washington D.C.: American Public Health Association; 1992.
8 International Union of Leather Technologists and Chemists Societies. Determination of nitrogen and hide substance (IUC 10)/ Determination of matter soluble in dichloromethane and free fatty acid content (IUC 4). Society of Leather Technologists and Chemists; 1996.
9 Basaran B, Ulas M, Bitlisli, BO, Aslan A. Distribution of Cr(III) and Cr(VI) in chrome tanned leather. Indian J. Chem. Technol. 2008;15:511-514.
10 Heidemann E. Fundamentals of leather manufacture. Darmstadt: Eduard Roether KG; 1993.
11 Bienkiewicz KJ. Physical chemistry of leather making. Florida: RE Krieger Publishing Co; 1983.
12 Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry. 6th ed. New York: John Wiley & Sons; 1999. p. 747.
13 Marjoniemi M. Calibration of chromium tanning solution with different regression methods. Appl. Spectrosc. 1992;46:1908-1911.   DOI
14 Covarrubias C, Arriagada R, Yanez J, et al. Removal of chromium( III) from tannery effluents, using a system of packed columns of zeolite and activated carbon. J. Chem. Technol. Biotechnol. 2005;80:899-908.   DOI
15 Guru M, Venedik D, Murathan A. Removal of trivalent chromium from water using low-cost natural diatomite. J. Hazard. Mater. 2008;160:318-323.   DOI
16 Hintermeyer BH, Lacour NA, Perez Padilla A, Tavani EL. Separation of the chromium(III) present in a tanning wastewater by means of precipitation, reverse osmosis and adsorption. Lat. Am. Appl. Res. 2008;38:63-71.
17 Tahir SS, Nassem R. Removal of Cr(III) from tannery wastewater by adsorption onto bentonite clay. Sep. Purif. Technol. 2007;53:312-321.   DOI
18 Barros MASD, Araujo Jr IF, Arroyo PA, Sousa-Aguiar EF, Tavares CRG. Multicomponent ion exchange isotherms in NaX zeolite. Lat. Am. Appl. Res. 2003;33:339-344.
19 Thompson M, Connick RE. Hydrolytic polimerization of chromium(III). 1. Two dimeric species. Inorg. Chem. 1981;20: 2279-2285.   DOI
20 Stunzi H, Marty W. Early stages of the hydrolysis of chromium(III) in aqueous solution. 1. Characterization of a tetrameric species. Inorg. Chem. 1983;22:2145-2150.   DOI
21 Wachowski L, Sobczak JW, Hofman M. Speciation of functional groups formed on the surface of ammoxidised carbonaceous materials by XPS method. Appl. Surf. Sci. 2007;253:4456-4461.   DOI
22 Tavani EL, Volzone C. Adsorption of chromium(III) from a tanning wastewater on kaolinite. J. Soc. Leather Technol. Chem. 1997;81:143-148.
23 Castellar Ortega GC, Garcia Garcia AA. Remocion de $Pb^{2+}$ en disolucion acuosa sobre carbon activado en polvo: Estudio por lote. Prospectiva 2011;9:59-68.
24 Rodriguez Estupinan JP. Modificacion y caracterizacion calorimetrica de carbon activado granular, para la remocion de Cd(II) y Ni(II) en adsorcion simple y competitiva. Magister thesis. Bogota: Facultad de Ciencias, Universidad Nacional de Colombia; 2011.
25 Megat Hanafiah MAK, Wan Ngah WS, Zakaria H, Ibrahim SC. Batch study of liquid-phase adsorption of lead ions using Lalang (Imperata cylindrica) leaf powder. J. Biol. Sci. 2007;7:222-230.   DOI
26 Bazargan-Lari R, Zafarani HR, Bahrololoom ME, Nemati A. Removal of Cu(II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: Equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2014;45:1642-1648.   DOI
27 Rajappa A, Ramesh K, Nandhakumar V, Ramesh H. Equilibrium and isotherm studies of Congo red adsorption onto commercial activated carbon. Int. J. Curr. Res. Chem. Pharm. Sci. 2014;1:43-48.
28 Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010;156:2-10.   DOI
29 Hall KR, Eagleton LC, Acrivos A, Vermeulen T. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fund. 1966;5:212-223.   DOI
30 Koppelman MH, Emerson AB, Dillard JG. Adsorbed Cr(III) on chlorite, illite, and kaolinite: An X-ray photoelectron spectroscopic study. Clays Clay Miner. 1980;28:119-124.   DOI
31 Lee I, Park JA, Kang JK, et al. Batch and flow-through column studies for Cr(VI) sorption to activated carbon fiber. Environ. Eng. Res. 2014;19:157-163.   DOI
32 Rao JR, Chandrababu NK, Muralidharan C, Nair BU, Rao PG, Ramasami T. Recouping the wastewater: A way forward for cleaner leather processing. J. Clean. Prod. 2003;11:591-599.   DOI
33 Azzi Rios RR, Alves DE, Dalmazio I, Vargas Bento SF, Donnici CL, Monteiro Lago R. Tailoring activated carbon by surface chemical modification with O, S, and N containing molecules. Mat. Res. 2003;6:129-135.   DOI
34 Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon 1999;37:1379-1389.   DOI
35 Biniak S, Szymanski G, Siedlewski J, Swiatkowski A. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 1997;35:1799-1810.   DOI
36 Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994;32:759-769.   DOI
37 Hintermeyer BH, Tavani EL. Adsorption, biosorption and bioaccumulation used to remove chromium(III) from tanning wastewaters: A critical review. J. Soc. Leather Technol. Chem. 2013;97:231-237.
38 Thorstensen T. Pollution prevention and control for small tanneries. J. Am. Leather Chem. Ass. 1997;92:245-255.
39 Cassano A, Molinari R, Romano M, Droli E. Treatment of aqueous effluents of the leather industry by membrane process: A review. J. Membrane Sci. 2001;181:111-126.   DOI
40 Ludvik J, Buljan J. Chrome balance in leather processing. Vienna: United Nations Industrial Development Organization; 2000.
41 Puntener A. The ecological challenge of producing leather. J. Am. Leather Chem. Ass. 1995;90:206-219.
42 Watts RJ. Hazardous wastes: Sources, pathways, receptors. New York: John Wiley and Sons; 1997.
43 Harte J, Holdren C, Schneider R, Shirley C. Guia de las sustancias contaminantes. Mexico: Editorial Grijalbo; 1995. p. 389-392.
44 Werkneh AA, Habtu NG, Beyene HD. Removal of hexavalent chromium from tannery wastewater using activated carbon primed from sugarcane bagasse: Adsorption/desorption studies. Am. J. Appl. Chem. 2014;2:128-135
45 Vasudevan M, Ajithkumar PS, Singh RP, Natarajan N. Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents. Environ. Eng. Res. 2016;21:171-179.   DOI
46 Gupta VK, Nayak A, Agarwal S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015;20:1-18.   DOI