• Title/Summary/Keyword: Liquid penetration

Search Result 327, Processing Time 0.027 seconds

SCANNING ELECTRON MICROSCOPIC STUDY ON THE EFFICACY OF ROOT CANAL WALL DEBRIDEMENT OF ROTARY NI-TI INSTRUMENTS WITH DIFFERENT CUTTING ANGLE (엔진 구동형 니켈-타이타늄 합금파일의 절삭각에 따른 근관성형 효과에 관한 전자현미경적 연구)

  • Jeon, In-Soo;Yoon, Tai-Cheol;Park, Seong-Ho;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.6
    • /
    • pp.577-586
    • /
    • 2002
  • The purpose of this in vitro study was to compare the effects of root canal cleanness following two Ni-Ti rotary instruments with different rake angle. Thirty-six sound, extracted human premolars with single root were randomly divided into three groups. The used rotary instruments were HEROShaper (Group 1, Micro-Mega, Besancon, France, n=12) and ProFile (Group 2, Maillefer, Ballaigues, Switzerland, n=12). Control group (n=12) was only extirpated with barbed broach (Mani, Matsutani Seisakusho Co., Japan) Group 1 & 2 teeth were prepared to a #40/.04 taper at the apex followed by 1 mm using crown-down technique. After canal preparation and frequent irrigation with 5.25% sodium hypochlorite, the roots split longitudinally into a bucco-lingual direction. Root halves were cross-sectioned in apical third portion again. All root specimens were processed for SEM investigation and photographed. Separate evaluations by one endodontist were undertaken for smear layer on prepared walls with a five score-index for each using reference photograph in root halves. The penetration depth of smear layer into dentinal tubules was also estimated in the other halves. Following results were obtained: 1. Smear layer was observed on all the prepared walls with two experimental groups except control group. 2. Smear layer characteristics in two experimental groups; 1) HEROShaper group showed snowy, dusty appearance and were shown open dentinal tubuli on the prepared walls of almost specimens, and the thickness of smear layer covering onto dentinal surfaces was within 1-2 ${\mu}m$ in a few specimens. 2) ProFile group showed shiny, burnished appearance and complete root canal wall covered by a homogenous smear layer with no open dentinal tubuli in all specimens. The penetration of smear layer into dentinal tubules was found in all specimens and the thickness was at 2-4 ${\mu}m$ in all specimens. These results demonstrated that a completely clean root canal could not be achieved regardless of positive or negative rake angle, which is in accordance with the majority of previous studies on root canal cleanliness In conclusion, through irrigation with antibacterial solutions or chelating agents is recommended to remove the smear layer on prepared canal wall in spite of Ni-Ti instrumentation.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

Effects of Nutrient Source on Soil Physical, Chemical, and Microbial Properties in an Organic Pear Orchard (유기질 비료 급원이 배 과원의 토양 물리화학성 및 미생물성에 미치는 영향)

  • Choi, Hyun-Sug;Li, Xiong;Kim, Wol-Soo;Lee, Youn
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate the effects of different organic treatments and a chemical fertilizer on the soil chemical, physical, and microbial properties in an organic pear orchard. METHODS AND RESULTS: Control was referred as a NPK chemical fertilizer (15N-9P-10K) and organic treatments included compost containing with oil cake, compost containing with humic acid, and compost containing with chitin substance. All treatments applied at rates equivalent to 200 g N per tree per year under the tree canopy in March 30 of 2008 and 2009. Soil bulk density, solid phase, liquid phase, and penetration resistance were not significantly different among the treatments. Organic treatment plots had greater organic matter, total nitrogen, potassium, and magnesium concentrations compared to control, and the nutrient concentrations were not consistently affected by the organic treatments. Microbial biomass nitrogen and carbon, dehydrogenase, acid-phosphatase, and chitinase activities overall increased from March to August. Organic treatments, especially compost containing with oil cake or chitin aicd, increased the microbial variables compared to control. CONCLUSION(s): All the organic treatments consistently stimulated soil biological activity. The consistent treatment effect, however, did not occur on the soil mineral nutrition as the trees actively taken up the nutrients during a growing season, which would have diminished treatment effects. Long-term study required for evaluating soil physical properties in a pear orchard.

Effect of Storage Times on Sperm Function, Sperm Chromatin Structure Assay (SCSA) and Correlations Between Fertility and SCSA in Boars (액상 정액의 보존 기간이 정자 기능 및 정자염색질 구조 분석에 미치는 영향과 인공수정 분만율과의 상관관계)

  • 유재원;이주형;김인철;이일주;강 권;민동수;윤희진;윤종택;방명걸;류범용;정영채;김창근
    • Journal of Animal Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.785-796
    • /
    • 2006
  • This study was designed to evaluate the changes in sperm motility, viability, HOST(hypo-osmotic swelling test), IVP(in vitro penetration), SCSA(sperm chromatin structure assay) during storage of liquid semen collected from boars with different farrowing rates using AI, and to find the relationship between boar fertility through AI and sperm diagnostic parameters during semen storage. The results of HOST were significantly decreased according to the increasing of in semen storage days and the results of IVP were significantly decreased at 3 days of semen storage (P<0.05). The %Red was significantly different among the >80%, 70󰠏80% and <70% farrowing rate group at semen storage day 6(P<0.05). The correlation coefficients between the %Red and farrowing rate were increased according to the semen storage. In conclusion, these results suggest that the sperm parameters evaluated in these studies may be useful indicators to predict the fertility of AI and evaluate the semen quality in boars.

Change of Ginsenosides and Free Sugars in Seeds During Stratification and Seedling During Early Growth Stage of Panax ginseng (인삼의 종자개갑시와 묘생육초기의 Ginsenosides 및 유리당의 변화)

  • 박귀희;이미경;박훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.286-292
    • /
    • 1986
  • For the elucidation of saponin synthesis during ontogeny changes of ginsenosides and free sugars in seeds during stratification and seedlings in early growth stage were investigated with high performance liquid chrom-atography. Embryo plus endosperm at 40-day stratification showed 80% decrease of total saponin, disappear-ance of Rc, Rb$_2$ and Rb$_1$ and appearance of Rg$_3$ (probable) and 20-Glc-Rf (probable). Leaf ginsenoside F$_3$ was found not in fruit plup but seed and decreased during stratification. Both decomposition and synthesis of saponin seemed to occure during stratification. Ginsenosides in endosperm and embryo might be originated from fruit pulp by penetration. In seedling saponin appeared first in shoot and in root about one month later. Ginsenoside Rc, Rb$_2$, Rb$_1$ appeared in root at the last investigation (June 30) indicating normal saponin synthetic capacity of root. Saponin synthetic rate was twice in leaf than in root. Leaf ginsenoside F$_3$ was found in seedling root. Root saponin Rg$_3$ and 20-Glc-Rf were found in leaf and stem in seedling and decreased with growth suggesting that rate saponin is not such in certain growth stage. Total saponin content was negatively correlated with PT/PD in seeds and arial parts of seedling due to greater change of PD. than PT. Seed at 70days stratification showed high sucrose content. In seedling glucose was main sugar in stem all the while and sucrose in root at early stage while glucose, fructose and sucrose were found in leaf.

  • PDF

The Effect of Glass Fabric Separator Elongation on Electric Property in Structural Battery (유리섬유 분리막 인장으로 인한 구조전지의 전기적 물성 변화)

  • Shin, Jae-Sung;Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2017
  • Structural battery has been researched extensively to combine the functions of the battery and structure without gravimetric or volumetric increments compared to their individual components. The main idea is to employ carbon fabric as the reinforcement and electrode, glass fabric as the separator, and solid-state electrolyte which can transfer load. However, state-of-the-art solid-state electrolytes do not have sufficient load carrying functionality and exhibiting appropriate ion conductivity simultaneously. Therefore, in this research, a system which has both battery and load carrying capabilities using glass fabric separator and liquid electrolyte was devised and tested to investigate the potential and feasibility of this structural battery system and observe electric properties. It was observed that elongating separator decreased electrical behavior stability. A possible cause of this phenomenon was the elongated glass fabric separator inadequately preventing the penetration of small particles of the cathode material into the anode. This problem was verified additionally by using a commercial separator. The characteristic of the glass fabric and the interface between the electrode and glass fabric needed to be further studied for the realization of such a load carrying structural battery system.

Evaluation of field applicability for grouting method using self-healing grout material (자기치유 물질을 이용한 그라우팅공법의 현장적용성 평가)

  • Choi, Yong-Sung;Kim, Byoung-Il;Yoo, Wan-Kyu;Lee, Jae-Dug;Choi, Yong-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.485-500
    • /
    • 2020
  • Due to various advantages such as small facilities, ease of construction and so on, the grouting technology which is widely used in construction field has developed remarkably compared with the past. However, the efforts to improve the homogeneity of quality, long-term durability and environmental problems have been continued. In recent years, new grouting method has been developed in order to solve problems such as low strength, durability and leaching phenomenon of liquid glass (sodium silicate) grouting material in Korea. A newly developed method integrates the injection material with the ground by the self-healing material of crystallization growth type. For this reason, it is known that improvement of the durability and water quality of the ground, prevention of leaching, and environment friendliness can be expected. The present study applied a newly developed method to test sites and verified its effect such as injection range, improvement effect, waterproofing performance and so on. Standard penetration test, field permeability test, borehole shear test, pressuremeter test and pH test were conducted, and the results were compared between before and after developed method application. As results of tests, the field applicability and improvement effect of developed method were proved to be excellent.

Preparation and Characteristics of Multilayer Lamellar Vesicle Using Phosphate Ester Surfactant (Phosphate ester 계면활성제를 이용한 다중층 라멜라 베시클의 제조 및 특성)

  • Kim, Young-Ho;Lee, Sang-Gil;Jung, Eun-Ji;Lee, Dong-Won;Pyo, Hyeong-Bae;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.280-289
    • /
    • 2013
  • Various vehicles have been studied in order to protect skin ageing and sustain constantly moisturization. Recently, in relation to maintain of moisture, absorption and penetration of active materials, there has been introducing many preparing methods such as liposome, liquid crystal and multilamellar emulsion. We developed multilayer lamellar vesicle using cetearyl alcohol/ceteth-20 phosphate/dicetyl phosphate as analogy of phospholipid according to variation of shear rate and pH. These multilayer lamellar vesicles were confirmed by cross polarizing microscope. As results, morphologies of lamellar vesicle were not uniformed at low shear rate and pH. Also, stabilities for encapsulation of retinol were observed at $42^{\circ}C$ during two months. As a result, quantitative content of retinol decreased at low pH. Multilayer lamellar vesicle decreased 14% of transepidermal water loss compared with O/W emulsion. We compared multilayer lamellar sun cream to O/W sun cream using in vitro SPF test of water resistance and concluded that multilayer lamellar sun cream is similar to O/W sun cream in water resistance.