• 제목/요약/키워드: Liquid film thickness

검색결과 217건 처리시간 0.029초

충돌 액막 분석을 위한 전기전도 액막 두께 측정장치 최적설계 (Optimum Design of a Liquid Film Thickness Measurement Device Using Electric Conductance for Impingement Liquid Film)

  • 이형원;이현창;김태성;안규복;윤영빈
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.386-391
    • /
    • 2018
  • To analyze the film cooling in a liquid rocket engine, it is necessary to understand the characteristics of the wall-impingement liquid film. We designed an optimal two-dimensional device for measuring the thickness of the liquid film thickness. This device quantitatively measures the liquid-film thickness distribution. In previous liquid-film thickness measuring devices, the liquid film was formed over the entire area of the sensor. However, its formation depended on injection conditions. To compensate for this, optimal resistors are selected. Additionally, saturation variations with partial saturation are analyzed. Furthermore, calibration using the enhanced plate method is conducted with improvements in spatial resolution. The device designed here can be used to analyze the properties of an impingement liquid film with a slit injector. This study can be used for film-cooling analysis in liquid rocket engines.

스프레이가 분사되는 표면에서의 액막 두께 분포 측정 (Measurement of liquid film thickness distribution on sprayed surfaces)

  • 김태호;김명호;조형규;김병재
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.33-38
    • /
    • 2023
  • Spray cooling is a method of cooling high-temperature heating elements by spraying droplets. Recently, spray cooling has been proposed for use in next-generation nuclear reactors. When droplets are sprayed onto the outer wall of a heat exchanger tube, a film boiling occurs on the outer wall. Over time, the outer wall temperature decreases, and a liquid film forms on the outer wall, and the heat exchanger outer wall is subsequently cooled by the liquid film. In this case, the liquid film thickness has a great influence on the heat removal performance. In this study, an experimental study was conducted to measure the liquid film thickness distribution in a droplet spray environment. For this purpose, a method using the electrical conductivity of the liquid was adopted.

$Moir\acute{e}$ Fringe에 의한 액막 두께 미소 변위 측정 연구 (A Study on the Small Disturbance Measurement of Liquid Film Thickness by $Moir\acute{e}$ Fringe)

  • 전홍신;김경훈
    • 한국분무공학회지
    • /
    • 제2권4호
    • /
    • pp.29-35
    • /
    • 1997
  • Liquid film thickness is measured by $moir\acute{e}$ topography which monitored liquid surface. $Moir\acute{e}$ fringe measurement techniques share the inherent simplicity found in optical interferometric techniques have the advantage of use over a greater range of displacement. $Moir\acute{e}$ fringe are the geometric interference patterns observed when two dense line grating are superposed. Light transmitted through a fixed line grating is deviated by the liquid film surface, producing a distored image of the grating. The $moir\acute{e}$ fringe produced by projection of this optically distored grating onto a second stationary grating permit visualization of the liquid surface and measurement of the liquid film thickness. This study measured the small amplitude of liquid film thickness to the $moir\acute{e}$ fringe pattern produced when spherical metal was dropped glycerin put)1 And the measurement of liquid film thickness flowing down an inclined plate are required to calculate the liquid slope in a position.

  • PDF

직접분사식 가솔린엔진용 고압 스월분무의 액막두께 측정 및 해석 (Measurement and Analysis of Liquid Film Thickness of Pressure-Swirl Spray for Direct-Injection Gasoline-Engines)

  • 문석수;;오희창;배충식
    • 한국분무공학회지
    • /
    • 제12권4호
    • /
    • pp.211-219
    • /
    • 2007
  • The liquid film thickness inside a pressure-swirl nozzle was measured, and then the measured liquid film thickness was compared with the results from previous empirical equations. The liquid film inside the nozzle was visualized using extended transparent nozzles and a microscopic imaging system, and then the measurement error was evaluated using optical geometry analysis. The high injection pressures up to 7MPa were adopted to simulate the injection conditions of the direct-injection spark-ignition engines. The totally different two injectors with different fuels, nozzle lengths, nozzle diameters and swirlers were utilized to obtain the comprehensive equations. The results showed that the liquid film thickness very slightly decreased at high injection pressures and the empirical equations overestimated the effect of injection pressure. Most of empirical equations did not include the effect of nozzle length and swirler angle, although it caused significant change in liquid film thickness. A new empirical equation was suggested based on the experimental results with the effects of fuel properties, injection pressure, nozzle diameter, nozzle length and swirler angle.

  • PDF

스월 인젝터에서 액막두께 측정과 Air Core의 구조에 관한 실험적 연구 (Experimental Studies on Liquid Film Thickness Measurement and the Formation of Air Core in a Swirl Injector)

  • 김성혁;김동준;윤영빈
    • 한국분무공학회지
    • /
    • 제11권3호
    • /
    • pp.147-154
    • /
    • 2006
  • A specially designed injector using electric conductivity was used to measure the liquid film thickness accurately. The measurement conducted through the precise calibration, accuracy is demonstrated in comparison with the previous theory and the results using other measurement method. The tendency of liquid film thickness for geometric parameters was examined by the precise measurement. The variation of air core and stability are examined through the visualization of the formation of air core in swirl chamber and the variation of liquid film thickness by the time.

  • PDF

수직관 내 순수 증기의 층류 액막 응축 모델 (Laminar Film Condensation Model of Pure Steam in a Vertical Tube)

  • 김동억
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.33-40
    • /
    • 2014
  • In this study, a new model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. In order to introduce the radial velocity profile in the liquid film, the liquid film flow was regarded to be in Couette flow dragged by the interfacial velocity at the liquid-vapor interface. For the calculation of the interfacial velocity, an empirical power-law velocity profile had been introduced. The resulting liquid film thickness and heat transfer coefficient obtained from the proposed model were compared with the experimental data from other experimental study and the results obtained from the other condensation models. In conclusion, the proposed model physically explained the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.

모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구 (An experimental study on the behavior of fuel flow in intake manifold by the model)

  • 박경석
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

액막두께 측정방법을 이용한 스월 인젝터의 분무특성 연구 (Spray characteristics of swirl injector using liquid film thickness measurement)

  • 김성혁;김동준;김병선;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.251-255
    • /
    • 2005
  • 본 연구에서는 스월 인젝터의 기하학적 형상에 따른 분무특성 파악을 위해 액막두께 측정방법을 사용하였다. 액막두께 측정을 위해 특별히 제작된 인젝터를 사용하였으며, 백홀과 스월챔버 그리고 오리피스의 길이에 따른 분무특성을 확인하였다. 분무특성 파악을 위해 분사압에 따른 유량변화, 오리피스 하단의 액막두께와 분무각을 측정하였다.

  • PDF

스월 인젝터에서의 액막두께 측정에 관한 연구 (Liquid film Thickness Measurement for a Swirl Injector)

  • 김성혁;김동준;윤영빈
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.70-77
    • /
    • 2006
  • 정확한 액막두께 측정을 위해 전기전도도를 이용한 장치를 제작하였다 정밀한 calibration을 통해 측정을 수행하였으며 기존의 이론식 및 다른 측정 방법을 이용한 결과와 비교해 보았을 때 정확성이 입증되었다. 시간에 따른 액막두께 변화를 통해 내부 유동의 변화 및 안정성도 살펴볼 수 있었다. 정확한 측정을 통해 기하학적 형상에 따른 액막두께의 경향성도 파악할 수 있었다.

A Photochromic Dye Activation Method for Measuring the Thickness of Liquid Films

  • Kim, Jeong-Bae;Kim, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권6호
    • /
    • pp.966-970
    • /
    • 2005
  • To measure the thickness of liquid films from 10 to 60 ${\mu}m$, we used photochromic dye activation. And we used silicone oil with 10 centi-Stokes and commercial photochromic dyes. To make films with exact and known thicknesses, we used two glass wafers. A film formed between two wafers after placing a drop of liquid of known volume on one wafer and covering the other. The film thickness could be estimated from the diameter of wafer and the dropped liquid volume. To quantitatively evaluate the result, captured the images using digital camera then analyzed the images using the image tool. The gray scale intensity using the captured images of activated dye with these thicknesses showed the repeatability below ${\pm}$ 1.0% when measured with a silicone oil solution containing 0.1% SO and SO-ANTH dyes. And we showed that photochromic dye activation method could be used to measure our liquid film thickness ranges.