• 제목/요약/키워드: Liquid drop

검색결과 480건 처리시간 0.028초

과냉 비등류의 실제건도와 보이드율에 관한 연구 (A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow)

  • 김종헌;김춘식;김경근;오철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

선회각도변화에 따른 2유체 선회분무의 거동특성 (Behavior Characteristics of Swirl-Twin Spray with Changing Swirl Angle)

  • 강완봉;차건종;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.943-948
    • /
    • 2000
  • The Twin-fluid Swirl Nozzles are used in many parts of the industry to produce homogeneous spray. This study is to investigate the effects of outer air swiller and inner water swiller on atomization of liquid.. The experiment was carried out with increasing air-flow rate at constant liquid-flow rate and with changing outer air swiller angle and inner water swiller angle. A Particle Dynamics Analyzer(PDA) was used to measure drop size, mean and ms values of axial velocity, number density and Sauter mean diameter(SMD). The axial mean velocity and SMD of droplets were measured along the center line and radial directions. It was found that the higher air flow-rate resulted in the smaller Sauter mean diameter of liquid spray and the higher axial mean velocity of droplets. This experimental results will be conveniently used for the preliminary design stage of twin-fluid nozzle development.

  • PDF

GMAW의 금속이행에 영향을 주는 변수연구를 위한 계측 시스템과 조건해석 (Study of variables influencing on the metal transfer in GMAW)

  • 이세헌
    • Journal of Welding and Joining
    • /
    • 제11권1호
    • /
    • pp.73-79
    • /
    • 1993
  • The phenomenon of metal transfer has been investigated for different transfer modes using a digital high speed motion analyzer and an arc shadow-graphing system based on a laser source and related optical system. It was observed that the pinch instability phenomenon did not occur for the globular transfer mode, since the liquid globule was then spherical rateher than a cylindrical liquid bar. On increasing the ratio of carbon dioxide to argon, the transition current from globular to spray transfer generally increased, but it is interesting that the transition was observed to occur at the lowest current in a 5% CO$_{2}$-95% argon gas mixture. For pure carbon dioxide and helium shielding gases, the drop frequency increased slowly with increasing current. At high currents or an argon based shielding gas, the length of liquid bar decreased as the carbon dioxide content increased. The acceleration of a droplet within the arc was determined using the gas drag force theory and was found to be greater than the experimental results.

  • PDF

Measurement of the Thermal Characteristics of Finned-tube Heat Exchanger Fin by Using the Liquid Crystal Technique

  • Kang, Hie-Chan;Kim, Moo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.28-35
    • /
    • 2001
  • This study deals with the thermal characteristics of finned-tube heat exchanger having two rows used in the air-conditioning application. Pressure drop and heat transfer coefficient were measured by using the three times models of plain fin and compared with the theory. Also the temperature distribution and heat conduction in the fin was measured by using the liquid crystal method. The surface temperature of rear row was nearly constant, and heat conduction in the fin was stronger near the front row than the rear row.

  • PDF

Formation of Dual Threshold in a Vertical Alignment Liquid Crystal Device

  • Choi, Sun-Wook;Jin, Huilian;Kim, Ki-Han;Lee, Ji-Hoon;Kim, Hoon;Shin, Ki-Chul;Kim, Hee Seop;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제16권2호
    • /
    • pp.170-173
    • /
    • 2012
  • We present a method that enables dual threshold voltages in a vertical alignment liquid crystal device, through which the gamma shift can be reduced with no subsequent decrease in the contrast ratio. By forming polymer layers, the threshold voltage shift is accomplished through the utilization of the voltage drop effect. We expect that the proposed method can be applied to the conventional 4-domain mode in order to achieve an 8-domain mode without the need for complex driving schemes.

초전도케이블 냉각시스템의 냉각특성 시험 (Test of The HTS Power Cable Cooling System)

  • 염한길;고득용;김익생;김춘동;김도형
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.281-283
    • /
    • 2003
  • High temperature superconducting power cable requires forced flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65K and 80K. Subcooler heat exchanger uses saturated liquid nitrogen boiling on the shell side to subcool the circulating liquid nitrogen stream that cools the HTS cable. The paper describes performance tests of the cooling system. The test items are heat exchanging performance of subcooler. pressure drop between supply and return lines, heat transfer coefficient inside former, cable cryostat heat leak and simulation of electrical load of HTS cable.

  • PDF

구형용기내 고상의 하강운동을 고려한 융해과정의 해석 (An Analysis of Gravity-Assisted Melting of Subcooled Solid Filled Inside a Spherical Capsule)

  • 서정세;김찬중;노승탁
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2601-2610
    • /
    • 1993
  • A numerical study on the melting process inside an isothermal spherical capsule is made. It is assumed that the phase change medium of its solid phase is heavier than the liquid phase and therefore the unmelted solid core is continuously moving downward on account of gravity forces. Such a gravity-assisted melting is commonly characterized by the existence of a thin liquid film below the solid core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow and heat transfer characteristics associated with the gravity-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved without subdivision of the solution domains. For example, the liquid film region and the upper melted region are treated here as one domain and thus obviating laborious efforts to couple them. Numerical results are obtained by varying the Rayleigh numbers and the degree of subcooling. For the range of parameters examined, the presence of subcooling was found to impede the melting rate. The dropping velocity of the unmelted solid core was observed to affect the natural convection in the liquid significantly. When compared with the available experimental data, much improved prediction was achieved.

동축형 인젝터의 미립화 특성 (Atomization Characteristics of shear coaxial twin fluid injector)

  • 한재섭;강경택;김유;김선진
    • 한국분무공학회지
    • /
    • 제5권4호
    • /
    • pp.40-46
    • /
    • 2000
  • To understand the basic the structure of the spray field and to obtain the initial conditions for computational models for shear coaxial twin-fluid injectors. the atomization characteristics under different flow and geometric conditions were examined. The spray characteristics such as SMD, mean axial and radial velocities, Dia. of droplets and volume flux with a P.D.P.A. Water and nitrogen gas under atmospheric conditions were used as a test fluids. The drops produced by shear coaxial injectors continue to disintegrate along the spray axis and decrease their sizes. SMD was the maximum at the spray center of spray and decreased with increasing radial distance. The results of this parametric study showed that SMD decreased with increasing gas injection velocity as well as with decreasing liquid injection mass flow rate, The relative velocity between gas and liquid flow played a significant role resulted in decreasing SMD and in spreading the spray. Recessing the liquid orifice resulted decreasing SMD and a spreading the spray. Recess of liquid orifice by 5.0mm showed best atomization characteristics in this experiment. Although drop diameter changes, shear coaxial injector sprays had constant velocity and exhibited a high degree of radial symmetry.

  • PDF

플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II) (A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

Growth Characteristics of Amorphous Silicon Oxide Nanowires Synthesized via Annealing of Ni/SiO2/Si Substrates

  • Cho, Kwon-Koo;Ha, Jong-Keun;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Hye-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4371-4376
    • /
    • 2011
  • In this work, we investigate the growth behavior of silicon oxide nanowires via a solid-liquid-solid process. Silicon oxide nanowires were synthesized at $1000^{\circ}C$ in an Ar and $H_2$ mixed gas. A pre-oxidized silicon wafer and a nickel film are used as the substrate and catalyst, respectively. We propose two distinctive growth modes for the silicon oxide nanowires that both act as a unique solid-liquid-solid growth process. We named the two growth mechanisms "grounded-growth" and "branched-growth" modes to characterize their unique solid-liquid-solid growth behavior. The two growth modes were classified by the generation site of the nanowires. The grounded-growth mode in which the grown nanowires are generated from the substrate and the branchedgrowth mode where the nanowires are grown from the side of the previously grown nanowires or at the metal catalyst drop attached at the tip of the nanowire stem.