• Title/Summary/Keyword: Liquid crystal (LC) alignment

Search Result 285, Processing Time 0.03 seconds

Liquid Crystal Alignment Effect on Polyimide Surface by Ion-beam Irradiation (이온빔을 이용한 폴리이미드 표면의 액정배향효과)

  • Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.330-330
    • /
    • 2008
  • It is widely investigated to liquid crystal (LC) alignment using non-contact alignment method such as ion-beam (IB) irradiation, UV alignment, and oblique deposition. Because conventional rubbing method has some drawbacks. These include defects from dust and electrostatic charges and rubbing scratch during rubbing process. In addition, rubbing method needs additional process to remove these defects. Therefore rubbing-free methods like ion-beam irradiation are strongly required. We studied LC alignment effect on poly imide surface by IB irradiation and electro-optical (EO) characteristics of twisted nematic liquid crystal display (TN-LCD). In this experiment, a good uniform alignment of the nematic liquid crystal (NLC) with the ion-beam exposure on the polyimide (PI) (SE-150 from Nissan Chemical) surface was observed. We also achieved low pretilt angle as a function of ion-beam irradiation intensity. In addition, it can be obtained the good EO properties of the IB-aligned TN-LCD on PI surface. Some other experiments results and discussion will be included in the poster.

  • PDF

Chemical Structural Effects of Polyimides on the Alignment and Electro-optical Properties of Liquid Crystal Cells

  • Paek, Sang-Hyon;Wonseok Dong
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2004
  • The nature of the nematic liquid crystal (LC) alignment induced by the rubbed polyimide (PI) alignment layers (ALs) and the electro-optical (EO) properties of the LC cells are expected to depend on the chemical and physical features of the PI. By employing five pyromellitic dianhydride (PMDA)-type PIs having different functionalities, we have studied the effects of the PI's structure and chemistry on the alignment characteristics and the cell's EO properties. Increasing the flexibility of the PI increases the pretilt angle and tends to improve the alignment stability. On the other hand, the rigid, fluorinated PI displays poor stability for LCs and induces a less stable/uniform LC alignment and, subsequently, a small pre tilt angle. It also transpired that fluorination of the PI deteriorated the voltage-transmittance characteristics and the voltage holding ratio; increasing the flexibility of the PI structure improves these EO properties. The finding that the qualitative trends for the PI's functionalities are similar for both the alignment and EO properties suggests that the EO properties are closely related to the alignment characteristics, which are determined by short-range interactions between LC and PI molecules.

Liquid Crystal Alignment and Generation of Pretilt Angle by Using Photo-alignment Techniques on Different Polymer Molecules (광배향기술을 이용한 액정배향의 기구 및 폴리이미드의 분자구조가 프리틸트각에 미치는 영향)

  • 서대식;황율연;이창훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.477-480
    • /
    • 1998
  • In this paper, we investigated the liquid crystal(LC) alignment and generation of pretilt angle by using photo-alignment techniques on two kinds of polyimide(PI) surface, It was found that the uniform alignment for nematic(N) LC is obtained in a cell with slanted UV light irradiation on PI surface without side chain. We successfully observed that the pretilt angle of NLC is generated about $3^{\circ}$ with an incident angle of 70 degree on the PI surface without side chain. It is considered that the pretilt angle generation in NLC is attributed to interaction between the LC molecules and the polymer surfaces.

  • PDF

Liquid crystal alignment on rubbed self-assembled monolayers with fluorinated alkyl chain

  • Oh, Chan-Woo;Hwang, Seok-Gon;Park, Sang-Geon;Park, Hong-Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.671-677
    • /
    • 2018
  • In this paper, we investigated the vertical alignment characteristics of liquid crystals (LCs) on fluorinated self-assembled monolayers (FSAMs). For comparison, a commercialized homeotropic polyimide (PI) layer was used as an LC alignment layer. We confirmed the successful deposition of FSAMs and the change of FSAMs before and after rubbing treatment through contact angle measurement and atomic force microscopy. The optical transmittance spectrum of the FSAMs is similar to that of the homeotropic PI layer, which is a superior optical characteristic applicable to LC devices. When FSAMs were applied to the vertically aligned (VA) LC cell, uniform and vertical LC alignments were achieved. In addition, the voltage-transmittance characteristic of VA LC cell with FSAMs was superior to that of VA LC cell with the conventional homeotropic PI layers. These results indicate that the FSAMs are suitable as the homeotropic LC alignment layer for enhanced LC devices.

Characteristics and Stability of Liquid Crystal Alignment for Interfacial Properties of Polyimide-Liquid Crystal (폴리이미드-액정 계면의 특성에 따른 액정 배향의 특성 및 안정성)

  • 동원석;이미혜;백상현
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.484-492
    • /
    • 2003
  • How the characteristics and stability of the rubbing-induced alignment of nematic liquid crystals (LCs) relate to the interfacial characteristics of LC-polyimide has been studied. The characteristics of the LC alignment (such as the LC texture, the pretilt angle, and the anchoring energy) and their thermal stability have been investigated for 5 polyimides synthesized for this work. The work showed that the rubbed polyimide alignment layer induces the strong LC anchoring and that the characteristics and stability of LC alignment are determined by the short-ranged interactions between LC and polyimide molecules at the alignment layer surface. The increased flexibility of the polyimide accelerates thermal imidization, increases the pretilt angle, and improves the alignment stability. It also turned out that fluorination of the polyimide tends to deteriorate the alignment uniformity and stability. No distinct differences in the alignment characteristics were shown for the aromatic- and alicyclic-dianhydride polyimides.

Liquid crystal alignment and generation of pretilt angle using an in-situ photo-alignment method (In-situ 광배향법을 이용한 액정 배향 및 프리틸트의 발생)

  • 서대식;김형규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.336-339
    • /
    • 2000
  • Effects of liquid crystal (LC) alignment using an in-situ photo-alignment method by linearly polarized UV exposure during imidization of polyirnide (PI) on the two kinds of PI surfaces with side chain were investigated. The generated pretilt angle in nematic (N) LC using an in-situ photo-alignment method was smaller than that of a conventional photo-alignment method for short UV exposure time. Also, the pretilt angle of the NLC using an in-situ photo-alignment method increases with increasing UV exposure time on the two kinds of the PI surfaces. Finally, the pretilt angle of NLC can be improved by annealing treatment.

  • PDF

Solution-Derived Hafnium Lanthanum Oxide Films Prepared Using Ion-Beam Irradiation and Their Applications as Alignment Layers for Twisted-Nematic Liquid Crystal Displays

  • Oh, Byeong-Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.355-358
    • /
    • 2016
  • We present the alignment characteristics of LC (liquid crystal) molecules on solution-derived HLO (hafnium lanthanum oxide) films fabricated using IB (ion-beam) irradiation. We then demonstrated that LC molecules can be homogeneously and uniformly aligned on the HLO film irradiated at an IB incident energy of 1.2 keV. Physicochemical analysis methods such as atomic force microscopy and X-ray photoelectron spectroscopy were used to verify the LC alignment mechanism on the IB-irradiated HLO film. In addition, the electro-optical performance of a TN (twisted-nematic) cell fabricated using the IB-irradiated HLO film exhibited characteristics superior to those of the conventional TN cell fabricated using a rubbed polyimide layer.

Homogeneous Liquid Crystal Alignment on Anisotropic YSnO Surface by Imprinting Method (임프린팅법을 이용한 YSnO 박막의 표면 이방성 획득과 액정 배향 특성 연구)

  • Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.21-24
    • /
    • 2020
  • We investigated a solution-driven Yttrium Tin Oxide (YSnO) film that was imprinted using a parallel nanostructure as a liquid crystal (LC) alignment layer. The imprinting process was conducted at the annealing temperature of 100℃. To evaluate the effect of this process, we conducted surface analyses including atomic force microscopy (AFM). During imprinting, the surface roughness was reduced, and anisotropic characteristics were observed. Planar LC alignment was observed at a pretilt angle of 0.22° on YSnO film. Surface anisotropy induced by imprinting method forces LC to align along the direction of the parallel nanostructure, which is an alternative to conventional polyimide treated using a rubbing process.

Effect of Electric field on an Injection Velocity in a Vertically Aligned Nematic Liquid Crystal (수직배향 네마틱 액정셀에서의 주입속도에 미치는 전기장 효과)

  • Jeon, Yeon-Mun;Kim, Sang-Gyun;Kim, Youn-Sik;An, Myeong-Hwan;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.695-699
    • /
    • 2006
  • Injection time of liquid crystal (LC) by capillary action in a vertically aligned (VA) nematic LC cell takes longer than that in a homogeneously aligned (HA) LC cell because Miesowicz viscosity in the former is bigger than that in the latter. To reduce liquid crystal injection time in the VA cell, we applied vertical electric field while injecting so that the orientation of LC molecules is changed from vertical alignment to homogeneous alignment. Consequently, the injection speed is improved by 25 % when compared with the cell without an applied field.

Ellipsometric Characterization of Rubbed Polyimide Alignment Layer in Relation with Distribution of Liquid Crystal Molecules in Twisted Nematic Cell

  • Cho, Sung Yong;Park, Sang Uk;Yang, Sung Mo;Kim, Sang Youl
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.185-194
    • /
    • 2018
  • Ultra-small optical anisotropy of a rubbed polyimide (PI) alignment layer is quantitatively characterized using the improved reflection ellipsometer. Twisted nematic (TN) cells are fabricated using the rubbed PIs of known surface anisotropy as alignment layers. Distribution of liquid crystal (LC) molecules in the TN cell is characterized using transmission ellipsometry. The retardation of the rubbed PI surface increases as rubbing strength increases. The tilt angle of the optic axis of the rubbed PI surface decreases as rubbing strength especially as the angular speed of the rubbing roller increases. Pretilt angle of LC molecules in the TN cell shows strong correlation with tilt angle of the optic axis of the rubbed PI surface. Both the apparent order parameter and the effective twist angle of the LC molecules in the TN cell decrease as the pretilt angle of LC molecules increases.