DOI QR코드

DOI QR Code

Ellipsometric Characterization of Rubbed Polyimide Alignment Layer in Relation with Distribution of Liquid Crystal Molecules in Twisted Nematic Cell

  • Received : 2018.03.06
  • Accepted : 2018.03.29
  • Published : 2018.04.25

Abstract

Ultra-small optical anisotropy of a rubbed polyimide (PI) alignment layer is quantitatively characterized using the improved reflection ellipsometer. Twisted nematic (TN) cells are fabricated using the rubbed PIs of known surface anisotropy as alignment layers. Distribution of liquid crystal (LC) molecules in the TN cell is characterized using transmission ellipsometry. The retardation of the rubbed PI surface increases as rubbing strength increases. The tilt angle of the optic axis of the rubbed PI surface decreases as rubbing strength especially as the angular speed of the rubbing roller increases. Pretilt angle of LC molecules in the TN cell shows strong correlation with tilt angle of the optic axis of the rubbed PI surface. Both the apparent order parameter and the effective twist angle of the LC molecules in the TN cell decrease as the pretilt angle of LC molecules increases.

Keywords

References

  1. P. Yeh and C. Gu, Optics of liquid crystal displays (John Wiley & Sons, Inc., New York, 2010), Chapter 2.
  2. M. Jiao, Z. Ge, Q. Song, and S. T. Wu, "Alignment layer effects on thin liquid crystal cells," Appl. Phys. Lett. 92, 061102 (2008). https://doi.org/10.1063/1.2841642
  3. K. Ichimura, Y. Suzuki, T. Seki, Y. Kawanishi, and K. Aoki, "Reversible alignment change of liquid crystals induced by photochromic molecular films, 2. Reversible alignment change of a nematic liquid crystal induced by pendent azobenzene groups-containing polymer thin films," Makromol. Chem., Rapid Commun. 10, 5-8 (1989). https://doi.org/10.1002/marc.1989.030100102
  4. B. Jerome, "Surface effects and anchoring in liquid crystals," Rep. Prog. Phys. 54, 391 (1991). https://doi.org/10.1088/0034-4885/54/3/002
  5. K. Ichimura, "Photoalignment of liquid-crystal systems," Chem. Rev. 100, 1847-1874 (2000). https://doi.org/10.1021/cr980079e
  6. L. A. Goodman, J. T. McGinn, C. H. Anderson, and F. DiGeronimo, "Topography of obliquely evaporated silicon oxide films and its effect on liquid-crystal orientation," IEEE Trans. Electron Devices 24, 795-804 (1977). https://doi.org/10.1109/T-ED.1977.18832
  7. G. Roberts, Langmuir-Blodgett Films (Springer Science & Business Media, 2013), Chapter 7.
  8. N. A. J. M. van Aerle, M. Barmentlo, and R. W. J. Hollering, "Effect of rubbing on the molecular orientation within polyimide orienting layers of liquid-crystal displays," J. Appl. Phys. 74, 3111-3120 (1993). https://doi.org/10.1063/1.354577
  9. Y. Sato, K. Sato, and T. Uchida, "Relationship between rubbing strength and surface anchoring of nematic liquid crystal," Jpn. J. Appl. Phys. 31, L579 (1992). https://doi.org/10.1143/JJAP.31.L579
  10. A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, "Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment," J. Vac. Sci. Tech. A 14, 1723-1728 (1996). https://doi.org/10.1116/1.580327
  11. I. Hirosawa, "Method of characterizing rubbed polyimide film for liquid crystal display devices using reflection ellipsometry," Jpn. J. Appl. Phys. 35, 5873-5875 (1996). https://doi.org/10.1143/JJAP.35.5873
  12. I. Hirosawa, H. Miyairi, T. Matsushita, and S. Saito, "The relation between pretilt angle of liquid crystal and optical anisotropy of alignment layer," Mol. Cryst. and Liq. Cryst. 368, 565-571 (2001). https://doi.org/10.1080/10587250108029989
  13. T. Sakai, K. Ishikawa, H. Takezoe, N. Matsuie, Y. Yamamoto, H. Ishii, Y. Ouchi, H. Oji, and K. Seki, "Surface orientation of main and side chains of polyimide alignment layer studied by near-edge X-ray absorption fine structure spectroscopy," J. Phys. Chem. B 105, 9191-9195 (2001). https://doi.org/10.1021/jp010482g
  14. J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S.-Y. Wang, F. W. Harris, S. Z. D. Cheng, S.-C. Hong, X. Zhuang, and Y. R. Shen, "Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains," J. Am. Chem. Soc. 123, 5768- 5776 (2001). https://doi.org/10.1021/ja0042682
  15. D. S. Seo, K. Araya, N. Yoshida, M. Nishikawa, Y. Yabe, and S. Kobayashi, "Effect of the polymer tlit angle for generation of pretilt angle in nematic liquid crystal on rubbed polyimide surfaces," Jpn. J. Appl. Phys. 34, 503-506 (1995). https://doi.org/10.1143/JJAP.34.L503
  16. K. H. Lyum, S. U. Park, S. M. Yang, H. K. Yoon, and S. Y. Kim, "Precise measurement of ultra small retardation of LCD alignment layer using improved transmission ellipsometry," Korean J. Opt. Photon. 24, 77-85 (2013). https://doi.org/10.3807/KJOP.2013.24.2.077
  17. K. H. Lyum, H. K. Yoon, S. J. Kim, S. H. An, and S. Y. Kim, "Study of ultra-small optical anisotropy profile of rubbed polyimide film by using transmission ellipsometry," J. Opt. Soc. Korea 18, 156-161 (2014). https://doi.org/10.3807/JOSK.2014.18.2.156
  18. J. H. Lee, M. S. Park, S. M. Yang, S. U. Park, M. H. Lee, and S. Y. Kim, "Precise measurement of the ultrasmall optical anisotropy of rubbed polyimide using an improved reflection ellipsometer," Korean J. Opt. Photon. 26, 195-202 (2015). https://doi.org/10.3807/KJOP.2015.26.4.195
  19. M. S. Park, S. M. Yang, S. U. Park, and S. Y. Kim, "Quantitative characterization of uniaxial anisotropy of rubbed polyimide alignment layer using reflection ellipsometry," in Proc. 22nd International Display Workshops (Japan, Dec. 2015), pp. 68-69.
  20. Retrieved from the world wide web; http://www.ellipsotech.com/Ellipsometer.html.
  21. J. W. Ryu, Study on the non-uniform distribution of anisotropy in wide view film using ellipsometry, Ph.D. Dissertation, Ajou University, 36-113 (2010).
  22. J. W. Ryu and S. Y. Kim, "Determination of the optic axis distribution of a hybridly aligned discotic material for wide-view films," J. Kor. Phys. Soc. 57, 233-239 (2010). https://doi.org/10.3938/jkps.57.233
  23. S. Y. Kim, Ellipsometry (Ajou University Press, Korea, 2000), Chapter 3-4.
  24. H. Fujiwara, Spectroscopic ellipsometry: principles and applications (John Wiley & Sons, Ltd., Japan, 2007).
  25. S. Y. Kim, "Ellipsometric expressions of multilayered substrate coated with a uniaxially anisotropic alignment layer," Korean J. Opt. Photon. 24, 271-278 (2013). https://doi.org/10.3807/KJOP.2013.24.5.271
  26. S. Y. Kim, "Ellipsometric expressions for a sample coated with uniaxially anisotropic layers," Korean J. Opt. Photon. 26, 275-282 (2015). https://doi.org/10.3807/KJOP.2015.26.5.275
  27. S. Y. Cho, S. U. Park, and S. Y. Kim, "Quantitative characterization of optical anisotropy of rubbed polyimide alignment layers in relation with distribution of liquid crystal molecules using an improved reflection ellipsometer," in Proc. 7th International Conference on Spectroscopic Ellipsometry (Germany, Jun. 2016), p. 322.
  28. S. Y. Cho, S. U. Park, S. M. Yang, and S. Y. Kim, "Ellipsometric characterization of the surface of rubbed polyimide and distribution of liquid crystal molecules in TN cells," in Proc. 23rd International Display Workshops in Conjunction with Asia Display (Japan, Dec. 2016), pp. 159-161.
  29. P. G. de Gennes, "Short range order effects in the isotropic phase of nematics and cholesterics," Mol. Cryst. Liq. Cryst. 12, 193-214 (1971). https://doi.org/10.1080/15421407108082773
  30. V. G. K. M. Pisipati, D. Madhavi Latha, P. V. Datta Prasad, and G. Padmaja Rani, "Order parameter studies from effective order geometry in a number of liquid crystals of different homologous series," J. Mol. Liq. 174, 1-4 (2012). https://doi.org/10.1016/j.molliq.2012.07.009
  31. S. Patari, T. K. Devi, and A. Nath, "Studies of optical texture, birefringence, order parameter, normalized polarizability and validation of the four-parameter model of a thermotropic mesogen 7OAOB," J. Mol. Liq. 215, 244-252 (2016). https://doi.org/10.1016/j.molliq.2015.12.026
  32. M. F. Vuks, "Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals," Opt. Spectrosc. 20, 361-364 (1966).
  33. A. Kanwar, "Measurement of order parameter, birefringence and polarizability of liquid crystals," J. Opt. 42, 311-315 (2013). https://doi.org/10.1007/s12596-013-0141-1
  34. S. Y. Kim, "The explicitly quasi-linear relation between the order parameter and normalized birefringence of aligned uniaxially anisotropic molecules determined using a numerical method," Korean J. Opt. Photon. 27, 223 (2016). https://doi.org/10.3807/KJOP.2016.27.6.223
  35. S. Y. Kim, "Universality of the quasi-linear relation between the order parameter and the normalized birefringence of aligned uniaxially anisotropic molecules," Korean J. Opt. Photon. 28, 33 (2017). https://doi.org/10.3807/KJOP.2017.28.1.033