• Title/Summary/Keyword: Liquid Target

Search Result 332, Processing Time 0.026 seconds

Current Research Trend on Recycling of Waste Flat Panel Display Panel Glass (폐 평판디스플레이 패널유리의 재활용 연구 동향)

  • Shin, Dongyoon;Kang, Leeseung;Park, Jae Layng;Lee, Chan Gi;Yoon, Jin-Ho;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2015
  • Although Korea is a top market sharing and world leading producer and developer of flat panel display devices, relevant recycling technology is not up to her prestigious status. Besides, most of the waste glass arising from flat panel displays is currently land-filled. The present paper mainly reviews on development of recycling systems for waste TFT-LCD glass from end-of-life LCD TVs and monitors and TFT-LCD process waste of crushed glass particles with target end uses of raw material for high strength concrete pile and glass fibers, respectively. Waste LCD glass was recycled to fabricate ingredients for high strength concrete piles with enhanced physical properties and spherical foam products. The waste LCD glass recycling technology is already developed to fabricate long and short fibers at commercial level. In view of these, future R & D on waste LCD glass materials is to be directed toward implementation of commercial materials recycling system therefrom.

Development of Purification Process of Recombinant Human Vascular Endotherial Growth Factor (VEGF) using Fusion Protein (융합 단백질을 이용한 재조합 인간 혈관내피세포 성장인자의 정제공정 개발)

  • Sung, Keehyun;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.369-378
    • /
    • 2017
  • Vascular endotherial growth factor (VEGF) is a potent mitogen that stimulates vascular permeability and angiogenesis and has a potential in therapeutic applications. An industrial production method that provides high yield as well as purity is needed. Researches for various factors of mild solubilization with combination of ubiquitin fusion protein to increase solubility were carried out as well as by changing pH and denaturant concentration. Usage of pET28-a bacteral expression vector in BL21 (DE3) host cell was capable of producing approximately 14 g/L VEGF fusion protein in 20L fermentor. A purification process consisting of four chromatography steps including refolding and digestion with UBP1 resulted in mild solublization under the conditions of 2M urea and pH 10.0 due to ubiquitin fusion tag protein that increases in solubility of target protein VEGF. High yield of refolding and dimerization could be obtained between two step Ni-affinity chromatography. Multimeric and misfolded proteins and endotoxin were removed by DEAE anion exchange chromatography. Final monomers were removed from dimers by gel filtration chromatography. Characterization analysis of purified dimeric VEGF was performed using SDS-PAGE and RP-HPLC with a purity of 97%.

Adsorption and Storage of Hydrogen by Nanoporous Adsorbents (나노세공체 흡착제에 의한 수소 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2007
  • Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources for $21^{st}$ century. In this review, several storage techniques are briefly reviewed and compared. Especially, adsorption/storage via physisorption at low temperature, by using nanoporous adsorbents, is reviewed and evaluated for further developments. The adsorption over a porous material at low temperature is currently investigated deeply to fulfill the storage target. In this review, several characteristics needed for the high hydrogen adsorption capacity are introduced. It may be summarized that following characteristics are necessary for high storage capacity over porous materials: i) high surface area and micropore volume, ii) narrow pore size, iii) strong electrostatic field, and iv) coordinatively unsaturated sites, etc. Moreover, typical results demonstrating high storage capacity over nanoporous materials are summarized. Storage capacity up to 7.5 wt% at liquid nitrogen temperature and 80 atm is reported. Competitive adsorbents that are suitable for hydrogen storage may be developed via intensive and continuous studies on design, synthesis, manufacturing and modification of nanoporous materials.

Validation of a HPLC MS/MS Method for Determination of Doxorubicin in Mouse Serum and its Small Tissues (마우스 혈장과 조직에서의 doxorubicin 측정 HPLC-MS/MS 방법)

  • Park, Jung-Sun;Kim, Hye-Kyung;Lee, Hye-Won;Lee, Mi-Hyun;Kim, Hyun-Gi;Chae, Soo-Wan;Chae, Han-Jung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.16 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • Doxorubicin (DXR) is a type of anti-cancer drug called an 'anthracycline glycoside', It works by impairing DNA synthesis, a crucial feature of cell division, and thus is able to target rapidly dividing cells. Doxorubicin is a very serious anti-cancer medication with definite potential to do great harm as well as great good. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) method was developed to identify and quantify DXR in small-volume biological samples. After the addition of internal standard (IS, $5{\mu}L\;of\;1{\mu}M/ml$ daunorubicin methanol solution) into the serum sample, the drug and IS were extracted by methanol. Following vortex for a 1min and centrifugation at 15,000g for 10 min the organic phase was transferred and evaporated under a vacuum. The residue was reconstituted with $350{\mu}L$ of mobile phase and $10{\mu}L$ was injected into C18 column with mobile phase composed of 0.05M ammonium acetate (0.1 M acetic acid adjusted to pH 3.5) and acetonitrile (40:60, v/v). The flow rate was kept constant at $350{\mu}L/min$. The ions were quantified in the multiple reaction mode (MRM), using positive ions, on a triple quadrupole mass spectrometer. The lower limits of quantification for Doxorubicin in plasma and small tissues were approximately 0.5 ng/mL and 0.5 ng/mL respectively. Intra- and inter-assay accuracy (% of nominal concentration) and precision (% CV) for all analytes were within 15%, respectively.

  • PDF

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Characterization and Formation Mechanism of Zr-Cu and Zr-Cu-Al Metallic Glass Thin Film by Sputtering Process

  • Lee, Chang-Hun;Sun, Ju-Hyun;Moon, Kyoung-Il;Shin, Seung-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.271-272
    • /
    • 2012
  • Bulk Metallic Glasses (BMGs or amorphous alloy) exhibit high strength and good corrosion resistance. Applications of thin films and micro parts of BMGs have been used a lot since its inception in the research of BMGs. However, Application and fabrication of BMGs are limited to make structural materials. Thin films of BMGs which is sputtered on the surface of structural materials by sputtering process is used to improve limits about application of BMGs. In order to investigate the difference of properties between designed alloys and thin films, we identified that thin films deposited on the surface that have the characteristic of the amorphous films and the composition of designed alloys. Zr-Cu (Cu=30, 35, 38, 40, 50 at.%) and Zr-Cu-Al (Al=10 at.% fixed, Cu=26, 30, 34, 38 at.%) alloys were fabricated with Zr (99.7% purity), Cu (99.997% purity), and Al (99.99% purity) as melting 5 times by arc melting method before rods 2mm in diameter was manufactured. In order to analyze GFA (Glass Forming Ability), rods were observed by Optical Microscopy and SEM and $T_g$, $T_x$, ($T_x$ is crystallization temperature and $T_g$ is the glass transition temperature) and Tm were measured by DTA and DSC. Powder was manufactured by Gas Atomizer and target was sintered using powder in large supercooled liquid region ($=T_x-T_g$) by SPS(Spark Plasma Sintering). Amorphous foil was prepared by RSP process with 5 gram alloy button. The composition of the foil and sputtered thin film was analyzed by EDS and EPMA. In the result of DSC curve, binary alloys ($Zr_{62}Cu_{38}$, $Zr_{60}Cu_{40}$, $Zr_{50}Cu_{50}$) and ternary alloys ($Zr_{64}Al_{10}Cu_{26}$, $Zr_{56}Al_{10}Cu_{34}$, $Zr_{52}Al_{10}Cu_{38}$) have $T_g$ except for $Zr_{70}Cu_{30}$ and $Zr_{60}Al_{10}Cu_{30}$. The compositions with $T_g$ made into powders. Figure shows XRD data of thin film showed similar hollow peak.

  • PDF

Determination of Ethylenethiourea in Fruits (과실류에 잔류하는 Ethylenethiourea 분석)

  • Kim, Eun-Hee;Jang, Mi-Ra;Kim, Jin-A;Kim, Tae-Rang;Yook, Dong-Hyun;Hwang, In-Sook;Kim, Jung-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.277-281
    • /
    • 2011
  • A rapid and very sensitive high-performance liquid chromatography/atmospheric-pressure chemical-ionization mass spectrometry method to detect ethylenethiourea (ETU) fungicide residues in fruits was developed. Methylene chloride was used as the surface extraction solvent for the target component. Recovery rates improved when cysteine hydrochloride and sodium carbonate were added to product prior to fortification. The limits of detection and quantification were approximately 0.006 and 0.02 mg/kg, respectively, from mandarin oranges. Recoveries from mandarin oranges, oranges, bananas, and pears, spiked in the range of 0.05-0.5 mg/kg, averaged 80-100%. The proposed method was used to monitor the presence of ETU in commercial fruits purchased from different markets in Seoul, Korea. ETU was found in four orange peels and in three mandarin orange peel samples. The highest ETU residue levels were $73.6{\mu}g/kg$ and $29.8{\mu}g/kg$.

Development and Prospect of Emulsion Technology in Cosmetics (화장품에서 유화기술의 발전 및 전망)

  • Kyong, Kee-Yeol;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.209-217
    • /
    • 2006
  • Emulsion is a dispersion system among liquids which are not miscible together. There are numerous cosmetic raw materials which have different physicochemical properties. Therefore, emulsion technology is very useful in cosmetics. With the development of emulsifier, several emulsification technologies have been developed. Since HLB method by Griffin in 1950's, PIT method, gel method, and D-phase methods, etc, have been developed. Recently, the application of natural emulsifier and polymeric emulsifier increases in cosmetics in order to achieve enhanced safety and biocompatibility. Besides nano-emulsion, multiple-emulsion, liquid crystal emulsion, and Pickering emulsion have been developed and applied as means of differentiating appearance and texture of products and achieving enhanced delivery of active ingredients. Meanwhile, the application studies of nano-dispersed structural system such as liposome or cubosome are on progress. Liposome is a bi- or multi-lamella layer dispersion system composed of amhiphilic molecules - phospholipids which are main components of plasma membrane. Cubosome also is a nano-sized dispersion system composed of a specific molecule like glyceryl monoloeate derived from natural products. And it has a cubic bicontinuous structure in water due to its unique molecular structure. Incorporating compounds (active materials) into such nano-particles can increase biocompatibility and delivery efficiency of target compounds. Manufacturing process and application of cosmetic emulsions and nano-particles are briefly introduced in this paper.

Identification of catalytic acidic residues of levan fructotransferase from Microbacterium sp. AL-210 (Microbacterium sp. AL-210이 생산하는 levan fructotransferase의 효소활성에 중요한 아미노산의 동정)

  • Sung, Hee-Kyung;Moon, Keum-Ok;Choi, Ki-Won;Choi, Kyung-Hwa;Hwang, Kyung-Ju;Kim, Myo-Jung;Cha, Jae-Ho
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.6-11
    • /
    • 2007
  • [ $\beta$ ]-Fructofuranosidases, a family 32 of glycoside hydrolases (GH32), share three conserved domains including the W(L/M)(C/N)DP(Q/N), FRDPK, and ECP(D/G) motifs. The functional role of the conserved acidic residues within three domains of levan fructotransferase, one of the $\beta-fructofuranosidases$, from Microbacterium sp. AL-210 was studied by site-directed mutagenesis. Each mutant was overexpressed in E. coli BL21(DE3) and purified by using Hi-Trap chelating affinity chromatography and fast performance liquid chromatography. Substitution of Asp-63 by Ala, Asp-195 by Asn, and Glu-245 by Ala and Asp decreased the enzyme activity by approximately 100-fold compared to the wild-type enzyme. This result indicates that three acidic residues Asp-63, Asp-195, and Glu-245 play a major role in catalysis. Since the three acidic residues are present in a conserved position in inulinase, levanase, levanfructotransferase, and invertase, they are likely to have a common functional role as nucleophile, transition state stabilizer, and general acid in $\beta-fructofuranosidases$.

Evaluation of a Sample-Pooling Technique in Estimating Bioavailability of a Compound for High-Throughput Lead Optimazation (혈장 시료 풀링을 통한 신약 후보물질의 흡수율 고효율 검색기법의 평가)

  • Yi, In-Kyong;Kuh, Hyo-Jeong;Chung, Suk-Jae;Lee, Min-Haw;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.191-199
    • /
    • 2000
  • Genomics is providing targets faster than we can validate them and combinatorial chemistry is providing new chemical entities faster than we can screen them. Historically, the drug discovery cascade has been established as a sequential process initiated with a potency screening against a selected biological target. In this sequential process, pharmacokinetics was often regarded as a low-throughput activity. Typically, limited pharmacokinetics studies would be conducted prior to acceptance of a compound for safety evaluation and, as a result, compounds often failed to reach a clinical testing due to unfavorable pharmacokinetic characteristics. A new paradigm in drug discovery has emerged in which the entire sample collection is rapidly screened using robotized high-throughput assays at the outset of the program. Higher-throughput pharmacokinetics (HTPK) is being achieved through introduction of new techniques, including automation for sample preparation and new experimental approaches. A number of in vitro and in vivo methods are being developed for the HTPK. In vitro studies, in which many cell lines are used to screen absorption and metabolism, are generally faster than in vivo screening, and, in this sense, in vitro screening is often considered as a real HTPK. Despite the elegance of the in vitro models, however, in vivo screenings are always essential for the final confirmation. Among these in vivo methods, cassette dosing technique, is believed the methods that is applicable in the screening of pharmacokinetics of many compounds at a time. The widespread use of liquid chromatography (LC) interfaced to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) allowed the feasibility of the cassette dosing technique. Another approach to increase the throughput of in vivo screening of pharmacokinetics is to reduce the number of sample analysis. Two common approaches are used for this purpose. First, samples from identical study designs but that contain different drug candidate can be pooled to produce single set of samples, thus, reducing sample to be analyzed. Second, for a single test compound, serial plasma samples can be pooled to produce a single composite sample for analysis. In this review, we validated the issue whether the second method can be applied to practical screening of in vivo pharmacokinetics using data from seven of our previous bioequivalence studies. For a given drug, equally spaced serial plasma samples were pooled to achieve a 'Pooled Concentration' for the drug. An area under the plasma drug concentration-time curve (AUC) was then calculated theoretically using the pooled concentration and the predicted AUC value was statistically compared with the traditionally calculated AUC value. The comparison revealed that the sample pooling method generated reasonably accurate AUC values when compared with those obtained by the traditional approach. It is especially noteworthy that the accuracy was obtained by the analysis of only one sample instead of analyses of a number of samples that necessitates a significant man-power and time. Thus, we propose the sample pooling method as an alternative to in vivo pharmacokinetic approach in the selection potential lead(s) from combinatorial libraries.

  • PDF