• Title/Summary/Keyword: Liquid Helium

Search Result 171, Processing Time 0.025 seconds

Design and Measurement of an SFQ OR gate composed of a D Flip-Flop and a Confluence Buffer (D Flip-Flop과 Confluence Buffer로 구성된 단자속 양자 OR gate의 설계와 측정)

  • 정구락;박종혁;임해용;장영록;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.127-131
    • /
    • 2003
  • We have designed and measured an SFQ(Single Flux Quantum) OR gate for a superconducting ALU (Arithmetic Logic Unit). To optimize the circuit, we used WRspice, XIC and Lmeter for simulations and layouts. The OR gate was consisted of a Confluence Buffer and a D Flip-Flop. When a pulse enters into the OR gate, the pulse does not propagate to the other input port because of the Confluence Buffer. A role of D Flip-Flip is expelling the data when the clock is entered into D Flip-Flop. For the measurement of the OR gate operation, we attached three DC/SFQs, three SFQ/DCs and one RS Flip -Flop to the OR gate. DC/SFQ circuits were used to generate the data pulses and clock pulses. Input frequency of 10kHz and 1MHzwere used to generate the SFQ pulses from DC/SFQ circuits. Output data from OR gate moved to RS flip -Flop to display the output on the oscilloscope. We obtained bias margins of the D Flip -Flop and the Confluence Buffer from the measurements. The measured bias margins $\pm$38.6% and $\pm$23.2% for D Flip-Flop and Confluence Buffer, respectively The circuit was measured at the liquid helium temperature.

  • PDF

Design and Measurement of SFQ DFFC and Inverter (단자속 양자 DFFC와 Inverter의 설계와 측정)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.17-20
    • /
    • 2003
  • We have designed and measured a SFQ(Single Flux Quantum) DFFC and an Inverter(NOT) for superconducting ALU(Arithmetic Logic Unit) development. To optimize the circuit, we used Julia, XIC, and L meter for circuit simulations and circuit layouts. The Inverter was consisted of a D Flip-Flop, a data input, a clock input and a data output. If a data pulse arrives at the inverter, then the output reads ‘0’ (no output pulse is produced) at the next clock period. If there is no input data pulse, it reads out ‘1’(output pulse is produced). The DFFC was consisted of a D flip-Flop, an Inverter, a Data in, a Clock in and two outputs. If a data pulse arrives at the DFFC circuit, then the output2 reads ‘1’ at the next clock period, otherwise it reads out ‘1’ to output1. Operation of the fabricated chip was performed at the liquid helium temperature and at the frequencies of 1KHz.

  • PDF

A study on fabrication of Bi-2223 tape for current lead (전류 도입선용 고온 초전도 선재 제작에 관한 연구)

  • Yim, Seong-Woo;Park, Kyung-Kuk;Han, Byung-Sung;Ha, Hong-Su;Cheong, Dae-Young;Oh, Sang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.835-837
    • /
    • 1998
  • Current lead plays the part of connector between ambient temperature and liquid helium superconducting magnet. Having zero resistance characteristic, it is expected that HTS has very low thermal conductivity and generate no joule heat when fabricated to current lead. In particular, among the HTS meterials, HTS tape has high Jc and Ag-sheath of tape plays the part of stabilizer, but it has too poor mechanical strength to be applied and when fabricated as long length tape, it has tendency to decline Jc seriously. In this study, we fabricated Bi-2223 multifilamentary tapes and then made current lead with stacking type using them. Through this work, we conclude that the defect of HTS long length tape is decreased by addition the number of stacking tape and that current lead is able to operate more stably by minimizing the gap of tapes.

  • PDF

Timing analysis of RSFQ ALU circuit for the development of superconductive microprocessor (초전도 마이크로 프로세서개발을 위한 RSFQ ALU 회로의 타이밍 분석)

  • Kim J. Y;Baek S. H.;Kim S. H.;Kang J. H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • We have constructed an RSFQ 4-bit Arithmetic Logic Unit (ALU) in a pipelined structure. An ALU is a core element of a computer processor that performs arithmetic and logic operation on the operands in computer instruction words. We have simulated the circuit by using Josephson circuit simulation tools. We used simulation tools of XIC, $WRspice^{TM}$, and Julia. To make the circuit work faster, we used a forward clocking scheme. This required a careful design of timing between clock and data pulses in ALU. The RSFQ 1-bit block of ALU used in constructing the 4-bit ALU was consisted of three DC current driven SFQ switches and a half-adder. By commutating output ports of the half adder, we could produce AND, OR, XOR, or ADD functions. The circuit size of the 4-bit ALU when fabricated was 3 mm x 1.5 mm, fitting in a 5 mm x 5mm chip. The fabricated 4-bit ALU operated correctly at 5 GHz clock frequency. The chip was tested at the liquid-helium temperature.

Development of an RSFQ 4-bit ALU (RSFQ 4-bit ALU 개발)

  • Kim J. Y.;Baek S. H.;Kim S. H.;Jung K. R.;Lim H. Y.;Park J. H.;Kang J. H.;Han T. S.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.104-107
    • /
    • 2005
  • We have developed and tested an RSFQ 4-bit Arithmetic Logic Unit (ALU) based on half adder cells and de switches. ALU is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. We have simulated the circuit by using Josephson circuit simulation tools in order to reduce the timing problem, and confirmed the correct operation of the designed ALU. We used simulation tools of $XIC^{TM},\;WRspice^{TM}$, and Julia. The fabricated 4-bit ALU circuit had a size of $\3000{\ cal}um{\times}1500{\cal}$, and the chip size was $5{\cal} mm{\times}5{\cal}mm$. The test speeds were 1000 kHz and 5 GHz. For high-speed test, we used an eye-diagram technique. Our 4-bit ALU operated correctly up to 5 GHz clock frequency. The chip was tested at the liquid-helium temperature.

  • PDF

Construction of a 40-channel SQUID System and Its Application to Neuromagnetic Measurements

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Park, Y.K.;Park, J.C.;Lee, D.H.;Ahn, C.B.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • A 40-channel superconducting quantum interference device (SQUID) system was constructed for measuring neuromagnetic fields. Main features of the system are the use of double relaxation oscillation SQUIDs (DROSs), and planar gradiometers measuring magnetic field components tangential to the head surface. The DROSs with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature dc preamplifiers and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. Average noise level of the 40 channels is around 1.2 $fT/cm/{\surd}Hz$ at 100 Hz, corresponding to a field noise of 5 $fT/{\surd}Hz$, operated inside a magnetically shielded room. The SQUID insert was designed to have low thermal load, minimizing the loss of liquid helium. The constructed system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF

Design of HTS Current Lead for SMES Magnet (SMES 마그네트용 고온초전도 전류도입선 설계)

  • Jang, Hyeon-Man;O, Sang-Su;Jo, Jeon-Uk;Jo, Yeong-Sik;Ha, Hong-Su;Ha, Dong-U;Seong, Gi-Cheol;Gwon, Yeong-Gil;Ryu, Gang-Sik;Kim, Sang-Hyeon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.6-10
    • /
    • 2000
  • 1.5 kA class HTS current leads for a SMES magnet, which are connected to a conventional vapor cooled copper leads, were designed. The HTS leads are composed of Bi-2223/Ag-Au tapes and a stainless stell tube. The estimated critical current of the lead is about 1.6 kA at 77.3 K and in a self magnetic field, and the heat input to the liquid helium from the cold end of the 35 cm lead is 0.4 W/lead. It has been made clear that the heat input decreases with increase of the lead length and decrease of the warm end temperature and Ag-Au/SC ratio.

  • PDF

Effect of Welding variables on White Spots Formation on the autogeneous GTA Welds of 36% Nickel-Iron alloy (36% Nickel-Iron 합금의 자동 GTA 용접부 반점 형성에 미치는 용접 변수의 영향)

  • Lee, Hee-Keun;Park, Jong-Min;Kim, Jin-Yong;Huh, Man-Ju
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.38-38
    • /
    • 2009
  • 36 percent nickel-iron alloy possesses a useful combination of low thermal expansion, moderately high strength and good toughness at temperatures down to that of liquid helium, $-269^{\circ}C$. These propeties coupled with good weldability and desirable physical properties make this alloy attractive for many cryogenic applications such as the cargo containment system in Liquefied Natural Gas carriers and pipes for low temperature. Generally, welding method of the 36% nickel-iron is applied with the manual and autogeneous GTAW. Lately white spots have been observed on the some autogeneous GTA welds of them. But the white spot formation have not been studied yet. This paper covers the analysis results of the white spots formation as changing welding variables.

  • PDF

Thermodynamic Analysis of Hydrogen Lquefaction Systems Using Gifford-McMahon Cryocooler

  • Chang, Ho-Myung;Park, Dae-Jong;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.39-50
    • /
    • 2000
  • Thermodynamic cycle analysis is presented to estimate the maximum liquefaction rate of hydrogen for various systems using a Gifford-McMahon(GM) cryocooler. Since the present authors` previous experiments showed that the gaseous hydrogen was liquefied approximately at the rate of 5.1 mg/s from the direct contact with a commercial two-stage GM refrigerator, this study has been proposed to predict how much the liquefaction rate can be increased in different configurations using the GM cooler and with improved heat exchangers. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the Linde-Hampson(L-H) system precooled by single-stage GM, the direct-contact system with two-stage GM, the L-H system precooled by two-stage GM, and the direct-contact system with helium GM-JT (Joule-Thomson). The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, even though the highly effective heat exchangers may be employed. It is concluded that the liquefaction rate is limited mainly because of the cooling capacity of the commercially available GM cryocoolers and a practical scale of hydrogen liquefaction is possible only if the GM cooler has a greater capacity at 70-100 K.

  • PDF

HTS high gradient magnetic separator prototype

  • Diev, D.N.;Lepehin, V.M.;Makarenko, M.N.;Polyakov, A.V.;Shcherbakov, V.I.;Shutova, D.I.;Surin, M.I.;Tagunov, E. Ya.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.1-5
    • /
    • 2018
  • A high gradient magnetic (HGM) separator prototype with the $2^{nd}$ generation high temperature superconducting (2G HTS) magnetic system operated in sub-cooled nitrogen is presently under development at NRC "Kurchatov Institute" (Moscow, Russia). The main goal of the project is an attempt to shift away from the complicated liquid helium cryostats towards simple cryocooler-based nitrogen cryogenics as much more convenient for HGM separators industrial applications. Using of commercial HTS tapes allows to get a sufficient level of magnetic fields and extraction forces with low energy consumption. The expected operational parameters of the device are 1.2-1.5 T in the empty operational gap and up to 3 T on the ferromagnetic filters. In this paper we briefly describe the design of the HTS rotary separator prototype with the horizontally oriented rotor axis and propose different types of ferromagnetic filters intended for weakly magnetic ores enrichment.