Fig. 1. The design of the HTS HGM separator with a vertically rotating wheel.
Fig. 2. The photos of the finished ReBCO coils and the parts of the cryostat under development.
Fig. 3. Filter № 1 “plates with ledges” (the photo, the layout, and the magnetic flux density distribution in the 1.35 T background magnetic field).
Fig. 4. Filter № 2 “rods” (the photo, the layout, and the magnetic flux density distribution in the 1.35 T background magnetic field).
Fig. 5. Filter № 3 “angular plates” (the photo, the layout, and the magnetic flux density distribution in the 1.35 T background magnetic field).
Fig. 6. Filter № 4 “plastic rods with a discrete ferromagnetic coating” (the photo, the layout, and the magnetic flux density distribution in the 1.35 T background magnetic field).
Fig. 7. The changing of the magnetic extraction force parameter γ = B.grad B on the surface of a plastic rod covered with ferromagnetic particles (filter № 4) in the 1.5 T background magnetic field.
TABLE I DESIGN SPECIFICATIONS OF THE REBCO MAGNETIC SYSTEM.
TABLE II THE PROPERTIES OF THE MODEL HGM FILTERS.
References
- S. He, C. Yang, S. Li and C. Zhang, "Enrichment of valuable elements from vanadium slag using superconducting HGMS technology," Prog. Supercond. Cryog., vol. 19, No 1, pp. 17-21, 2017. https://doi.org/10.9714/psac.2017.19.1.017
- J. Kopp, "Superconducting magnetic separators," Magn. and electrical separation, vol. 3, pp. 17-32, 1991. https://doi.org/10.1155/1991/73078
- Z. Zian, et all, "Recent development of high gradient superconducting magnetic separator for kaolin in China," Prog. Supercond. Cryog., vol. 19, No 1, pp. 5-8, 2017. https://doi.org/10.9714/psac.2017.19.1.005
- Y. Li, H. Chen, J. Wang, F. Xu and W. Zhang, "Research on red mud treatment by a circulating superconducting magnetic separator," Environment. Tech., vol. 35, No 10, pp. 1243-1249, 2014. https://doi.org/10.1080/09593330.2013.865763
- J. B. Song, K. L. Kim, D. Yang, Y. G. Kim, J. Lee, M. C. Ahn, and H. Lee, "High-Tc superconducting high gradient magnetic separator using solid nitrogen cooling system for purification of CMP wastewater," IEEE Trans. on Appl. Supercond., vol. 23, No 3, pp. 3700505, 2013. https://doi.org/10.1109/TASC.2013.2255950
- Y. G. Kim, J. B. Song, D. G. Yang, W. J. Kim, S. H. Kim, and H. Lee, "Purification of chemical mechanical polishing wastewater via superconducting high gradient magnetic separation system with optimal coagulation process," IEEE Trans. on Appl. Supercond., vol. 25, No 3, pp. 3700205, 2015.
-
H. Kumakura, T. Ohara, H. Kitaguchi, K. Togano, H. Wada, H. Mukai, K. Ohmatsu, and H. Takei, "Conduction cooled
$Bi_2Sr_2Ca_2Cu_3O_x$ (Bi-2223) magnet for magnetic separation," Physica C, vol. 350, pp. 76-82, 2001. https://doi.org/10.1016/S0921-4534(00)01569-0 - D. N. Diev, V. M. Lepehin, M. N. Makarenko, A. V. Polyakov, V. I. Shcherbakov, D. I. Shutova and M. I. Surin, "REBCO split coil magnet for high gradient magnetic separation", Proc. 27th ICEC & ICMC, Oxford, England, 3-7th September 2018, submitted for publication.
- J. Svoboda, "Magnetic techniques for the treatment of materials," Kliwer academic publishers, 2004.
- https://www.ansys.com.