• 제목/요약/키워드: Liquid Chromatography-tandem Mass Spectrometry

검색결과 398건 처리시간 0.026초

Rapid Determination of L-carnitine in Infant and Toddler Formulas by Liquid Chromatography Tandem Mass Spectrometry

  • Ahn, Jang-Hyuk;Kwak, Byung-Man;Park, Jung-Min;Kim, Na-Kyeoung;Kim, Jin-Man
    • 한국축산식품학회지
    • /
    • 제34권6호
    • /
    • pp.749-756
    • /
    • 2014
  • A rapid and simple analytical method for L-carnitine was developed for infant and toddler formulas by liquid chromatography tandem mass spectrometry (LC-MS/MS). A 0.3 g of infant formula and toddler formula sample was mixed in a 50 mL conical tube with 9 mL water and 1 mL 0.1 M hydrochloric acid (HCl) to chemical extraction. Then, chloroform was used for removing a lipid fraction. After centrifuged, L-carnitine was separated and quantified using LC-MS/MS with electrospray ionization (ESI) mode. The precursor ion for L-carnitine was m/z 162, and product ions were m/z 103 (quantitative) and m/z 85 (qualitative), respectively. The results for spiked recovery test were in the range of 93.18-95.64% and the result for certified reference material (SRM 1849a) was within the range of the certificated values. This method could be implemented in many laboratories that require time and labor saving.

Determination of Polar Secondary Metabolomes in Arabidopsis thaliana using High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry

  • Cho, Young-Ah;Park, Se-min;Bae, Dong-Won;Seo, On-Nuri;Lee, Ji-Eun;Jeong, Sung-Woo;Kwon, Young-Sang;Cha, Jae-Yul;Bae, Han-Hong;Shin, Sung-Chul
    • 농업생명과학연구
    • /
    • 제46권6호
    • /
    • pp.165-171
    • /
    • 2012
  • As a preceding study for investigating the influence of sound wave stimulus on Arabidopsis thaliana metabolomics, the polar secondary metabolomes of the plant were determined using high performance liquid chromatography coupled with tandem mass spectrometry. A total of 10 polar secondary metabolomes were characterized and quantified. Among them, 4 metabolomes, p-coumaroylagmatine isomer (7 and 8), p-coumaroylagmatine isomer (9 and 10) were identified in the plant for the first time. The validation was conducted in terms of linearity, recovery, precision, limit of detection (LOD) and limit of quantification (LOQ). The validated method was applied to the simultaneous quantification of the 10 polar secondary metabolomes.

A fragmentation database of soyasaponins by liquid chromatography with a photodiode array detector and tandem mass spectrometry

  • Son, Haereon;Mukaiyama, Kyosuke;Omizu, Yohei;Tsukamoto, Chigen
    • 분석과학
    • /
    • 제34권4호
    • /
    • pp.172-179
    • /
    • 2021
  • Oleanane-type triterpenoids exist as secondary metabolites in various plants. In particular, soyasaponin, an oleanane-type triterpenoid, is abundant in the hypocotyl of soybean, one of the most widely cultivated crops in the world. Depending on their chemical structure, soyasaponins are categorized as group A saponins or group DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins. The different soyasaponin chemical structures present different health functionalities and taste characteristics. However, conventional phenotype screening of soybean requires a substantial amount of time for functionality of soyasaponins. Therefore, we attempted to use liquid chromatography with a photodiode array detector and tandem mass spectrometry (LC-PDA/MS/MS) for accurately predicting the phenotype and chemical structure of soyasaponins in the hypocotyl of five common soybean natural mutants. In this method, the aglycones (soyasapogenol A [SS-A] and soyasapogenol B [SS-B]) were detected after acid hydrolysis. These results indicated that the base peak and fragmentation differ depending on the chemical structure of soyasaponin with aglycone. Thus, a fragmentation database can help predict the chemical structure of soyasaponins in soyfoods and plants.

A Comprehensive Identification of Synaptic Vesicle Proteins in Rat Brains by cRPLC/MS-MS and 2DE/MALDI-TOF-MS

  • Lee, Won-Kyu;Kim, Hye-Jung;Min, Hye-Ki;Kang, Un-Beom;Lee, Cheol-Ju;Lee, Sang-Won;Kim, Ick-Young;Lee, Seung-Taek;Kwon, Oh-Seung;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1499-1509
    • /
    • 2007
  • Proteomic analyses of synaptic vesicle fraction from rat brain have been performed for the better understanding of vesicle regulation and signal transmission. Two different approaches were applied to identify proteins in synaptic vesicle fraction. First, the isolated synaptic vesicle proteins were treated with trypsin, and the resulting peptides were analyzed using a high-pressure capillary reversed phase liquid chromatography/tandem mass spectrometry (cRPLC/MS/MS). Alternatively, proteins were separated by two-dimensional gel electrophoresis (2DE) and identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF/MS). Total 18 and 52 proteins were identified from cRPLC/MS-MS and 2DE-MALDI-TOF-MS analysis, respectively. Among them only 2 proteins were identified by both methods. Of the proteins identified, 70% were soluble proteins and 30% were membrane proteins. They were categorized by their functions in vesicle trafficking and biogenesis, energy metabolism, signal transduction, transport and unknown functions. Among them, 27 proteins were not previously reported as synaptic proteins. The cellular functions of unknown proteins were estimated from the analysis of domain structure, expression profile and predicted interaction partners.

Simple and Rapid Liquid Chromatography-Tandem Mass Spectrometry Analysis of Arctigenin and its Application to a Pharmacokinetic Study

  • Thapa, Subindra Kazi;Weon, Kwon-Yeon;Jeong, Seok Won;Kim, Tae Hwan;Upadhyay, Mahesh;Han, Yo-Han;Jin, Jong-Sik;Hong, Seung-Heon;Youn, Yu Seok;Shin, Beom Soo;Shin, Soyoung
    • Mass Spectrometry Letters
    • /
    • 제8권2호
    • /
    • pp.23-28
    • /
    • 2017
  • Arctigenin is the main active ingredient of Fructus Arctii, which has been reported with a variety of therapeutic activities including anti-cancer, anti-inflammation, anti-virus, and anti-obesity effects. In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of arctigenin in rat plasma. The assay utilized a simple protein precipitation with methanol and the mobile phase consisted of 100% methanol and water containing 0.1% formic acid (65:35 v/v). Arctigenin and the internal standard (psoralen) were monitored using a positive electrospray turbo ionspray mode with multiple reaction monitoring transitions of m/z $373.2{\rightarrow}136.9$ and m/z $187.2{\rightarrow}130.9$, respectively, and total chromatographic run time was within 5 min. The lower limit of quantification (LLOQ) of arctigenin was 5 ng/mL in the rat plasma. The intra- and inter-day accuracy of arctigenin at LLOQ and matrix-matched quality control samples ranged 97.4 - 104.8% and 97.2 - 102.0%, respectively. The intra-day precision was within 4.80% and the inter-day precision was within 5.92%. Application of the present method was demonstrated through a pharmacokinetic study after intravenous and oral administration of arctigenin in male Sprague Dawley rats.

Determination of Ceftiofur Residues by Simple Solid Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry in Eel, Flatfish, and Shrimp

  • Kim, Joohye;Shin, Dasom;Kang, Hui-Seung;Lee, Eunhye;Choi, Soo Yeon;Lee, Hee-Seok;Cho, Byung-Hoon;Lee, Kang-Bong;Jeong, Jiyoon
    • Mass Spectrometry Letters
    • /
    • 제10권2호
    • /
    • pp.43-49
    • /
    • 2019
  • The aim of this study was conducted to develop an analytical method to determine the concentration of ceftiofur residue in eel, flatfish, and shrimp. For derivatization and extraction, the sample was hydrolyzed with dithioerythritol to produce desfuroylceftiofur, which was then derivatized by iodoacetamide to obtain desfuroylceftiofur acetamide. For purification, the process of solid phase extraction (Oasis HLB) was used. The target analytes were confirmed and quantified in $C_{18}$ column using liquid chromatography-tandem mass spectrometry with 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as the mobile phase. The linearity of the standard calibration curve was confirmed by a correlation coefficient, $r^2>0.99$. The limit of quantification for ceftiofur was 0.002 mg/kg; the accuracy (expressed as the average recoveries) was 80.6-105%; the precision (expressed as the coefficient of variation) was below 6.3% at 0.015, 0.03, and 0.06 mg/kg. The validated method demonstrated high accuracy and acceptable sensitivity to meet the Codex guideline requirements. The developed method was tested using market samples. As a results, ceftiofur was detected in one sample. Therefore, it can be applied to the analysis of ceftiofur residues in fishery products.

LC-MS/MS-based Quantification of Ten Neurotransmitters in Rat Limbic System and Serum: Application to Chronic Unpredictable Mild Stress-Induced Depression Rats

  • Mingyan Ma;Qiangxiang Chen;Wen Cao;Yubo Zhou;Aijuan Yan;Yanru Zhu
    • Mass Spectrometry Letters
    • /
    • 제14권3호
    • /
    • pp.91-103
    • /
    • 2023
  • As one of the most common mood disorders, numerous studies have shown depression is the main risk factor for non-suicidal self-harm. The pathogenesis of depression is complex, and a comprehensive and rapid measurement of monoamine neurotransmitters and their metabolites will be very helpful in understanding the pathogenesis of depression. Therefore, a rapid and sensitive underivatized liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous monitoring of the levels of ten neurotransmitters and their metabolites in rat serum and limbic system and successfully applied to quantify the changes of neurotransmitter levels in chronic unpredictable mild stress-induced rats. The analytes studied were mainly involved in tyrosine metabolism, tryptophan metabolism, and glutamate cycling pathways, which are important in the pathogenesis of depression. It had been verified the method was sensitive and effective, with satisfactory linearity, and met the requirements of biological sample determination. Levels of neurotransmitters in rat serum, hippocampus, amygdala, prefrontal cortex, striatum, and hypothalamus were determined via the method. The results showed serotonin, dopamine, norepinephrine, and their metabolites were decreased, glutamine was increased, and glutamate was disturbed in chronic unpredictable mild stress-induced depression rats. This method provides a new approach to studying the pathogenesis of depression and other neurological disorders.

Tentative identification of 20(S)-protopanaxadiol metabolites in human plasma and urine using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry

  • Ling, Jin;Yu, Yingjia;Long, Jiakun;Li, Yan;Jiang, Jiebing;Wang, Liping;Xu, Changjiang;Duan, Gengli
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.539-549
    • /
    • 2019
  • Background: 20(S)-Protopanaxadiol (PPD), the aglycone part of 20(S)-protopanaxadiol ginsenosides, possesses antidepressant activity among many other pharmacological activities. It is currently undergoing clinical trial in China as an antidepressant. Methods: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass tandem mass spectrometry method was established to identify the metabolites of PPD in human plasma and urine following oral administration in phase IIa clinical trial. Results: A total of 40 metabolites in human plasma and urine were identified using this method. Four metabolites identified were isolated from rat feces, and two of them were analyzed by NMR to elucidate the exact structures. The structures of isolated compounds were confirmed as (20S,24S)-epoxydammarane-12,23,25-triol-3-one and (20S,24S)-epoxydammarane-3,12,23,25-tetrol. Both compounds were found as metabolites in human for the first time. Upon comparing our findings with the findings of the in vitro study of PPD metabolism in human liver microsomes and human hepatocytes, metabolites with m/z 475.3783 and phase II metabolites were not found in our study whereas metabolites with m/z 505.3530, 523.3641, and 525.3788 were exclusively detected in our experiments. Conclusion: The metabolites identified using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry in our study were mostly hydroxylated metabolites. This indicated that PPD was metabolized in human body mainly through phase I hepatic metabolism. The main metabolites are in 20,24-oxide form with multiple hydroxylation sites. Finally, the metabolic pathways of PPD in vivo (human) were proposed based on structural analysis.

Analysis of oligosaccharides from Panax ginseng by using solid-phase permethylation method combined with ultra-high-performance liquid chromatography-Q-Orbitrap/mass spectrometry

  • Li, Lele;Ma, Li;Guo, Yunlong;Liu, Wenlong;Wang, Yang;Liu, Shuying
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.775-783
    • /
    • 2020
  • Background: The reports about valuable oligosaccharides in ginseng are quite limited. There is an urgent need to develop a practical procedure to detect and analyze ginseng oligosaccharides. Methods: The oligosaccharide extracts from ginseng were permethylated by solid-phase methylation method and then were analyzed by ultra-high-performance liquid chromatography-Q-Orbitrap/MS. The sequence, linkage, and configuration information of oligosaccharides were determined by using accurate m/z value and tandem mass information. Several standard references were used to further confirm the identification. The oligosaccharide composition in white ginseng and red ginseng was compared using a multivariate statistical analysis method. Results: The nonreducing oligosaccharide erlose among 12 oligosaccharides identified was reported for the first time in ginseng. In the comparison of the oligosaccharide extracts from white ginseng and red ginseng, a clear separation was observed in the partial least squares-discriminate analysis score plot, indicating the sugar differences in these two kinds of ginseng samples. The glycans with variable importance in the projection value large than 1.0 were considered to contribute most to the classification. The contents of oligosaccharides in red ginseng were lower than those in white ginseng, and the contents of maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, maltononaose, sucrose, and erlose decreased significantly (p < 0.05) in red ginseng. Conclusion: A solid-phase methylation method combined with liquid chromatography-tandem mass spectrometry was successfully applied to analyze the oligosaccharides in ginseng extracts, which provides the possibility for holistic evaluation of ginseng oligosaccharides. The comparison of oligosaccharide composition of white ginseng and red ginseng could help understand the differences in pharmacological activities between these two kinds of ginseng samples from the perspective of glycans.

High-Performance Liquid Chromatographic-Tandem Mass Spectrometric Determination of Itraconazole in Human Plasma for Bioavailability and Bioequivalence Studies

  • Choi, Young-Wook;Nam, Dae-young;Kang, Kyoung-Hoon;Ha, Kyung-Wook;Han, In-Hee;Chang, Byung-Kon;Yoon, Mi-kyeong;Lee, Jae-hwi
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.291-294
    • /
    • 2006
  • A highly sensitive high-performance liquid chromatographic-tandem mass spectrometric method (HPLC-MSMS) has been developed to quantify itraconazole in human plasma for the purpose of pharmacokinetic studies. Sample preparation was carried out by liquid-liquid extraction using loratadine as an internal standard. Chromatographic separation used a YMC $C_{18}$ column, giving an extremely fast total run time of 3 min. The method was validated and used for the bioequivalence study of itraconazole tablets in healthy male volunteers (n = 31). The lower limit of detection proved to be 0.2 ng /mL for itraconazole.