• 제목/요약/키워드: Lipschitz mapping

검색결과 41건 처리시간 0.018초

ACCELERATED STRONGLY CONVERGENT EXTRAGRADIENT ALGORITHMS TO SOLVE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REAL HILBERT SPACES

  • Nopparat Wairojjana;Nattawut Pholasa;Chainarong Khunpanuk;Nuttapol Pakkaranang
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.307-332
    • /
    • 2024
  • Two inertial extragradient-type algorithms are introduced for solving convex pseudomonotone variational inequalities with fixed point problems, where the associated mapping for the fixed point is a 𝜌-demicontractive mapping. The algorithm employs variable step sizes that are updated at each iteration, based on certain previous iterates. One notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without necessitating any line search procedures. The iterative sequence constructed demonstrates strong convergence to the common solution of the variational inequality and fixed point problem under standard assumptions. In-depth numerical applications are conducted to illustrate theoretical findings and to compare the proposed algorithms with existing approaches.

GENERALIZED SYSTEMS OF RELAXED $g-{\gamma}-r-COCOERCIVE$ NONLINEAR VARIATIONAL INEQUALITIES AND PROJECTION METHODS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제7권2호
    • /
    • pp.83-94
    • /
    • 2003
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Approximation solvability of a system of nonlinear variational inequality (SNVI) problems, based on the convergence of projection methods, is given as follows: find elements $x^*,\;y^*{\in}H$ such that $g(x^*),\;g(y^*){\in}K$ and $$<\;{\rho}T(y^*)+g(x^*)-g(y^*),\;g(x)-g(x^*)\;{\geq}\;0\;{\forall}\;g(x){\in}K\;and\;for\;{\rho}>0$$ $$<\;{\eta}T(x^*)+g(y^*)-g(x^*),\;g(x)-g(y^*)\;{\geq}\;0\;{\forall}g(x){\in}K\;and\;for\;{\eta}>0,$$ where T: $H\;{\rightarrow}\;H$ is a relaxed $g-{\gamma}-r-cocoercive$ and $g-{\mu}-Lipschitz$ continuous nonlinear mapping on H and g: $H{\rightarrow}\;H$ is any mapping on H. In recent years general variational inequalities and their algorithmic have assumed a central role in the theory of variational methods. This two-step system for nonlinear variational inequalities offers a great promise and more new challenges to the existing theory of general variational inequalities in terms of applications to problems arising from other closely related fields, such as complementarity problems, control and optimizations, and mathematical programming.

  • PDF

퍼지 시스템에 대한 관측가능성 (Continuously initial observability for the fuzzy system)

  • 강점란;권영철;박종서
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.168-171
    • /
    • 2000
  • This paper is concerned with fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in E$\_$N/ We study continuously initial observability for the following fuzzy system. x(t)=a(t)x(t)+f(t,x(t)), x(0)=x$\_$0/, y(t)=$\_$${\alpha}$/∏(x(t)), where a: [0, T]\longrightarrowE$\_$N/ is fuzzy coefficient, initial value x$\_$0/$\in$E$\_$N/ and nonlinear funtion f: [0, T]${\times}$E$\_$N/\longrightarrowE$\_$N/ satisfies a Lipschitz condition. Given fuzzy mapping ∏: C([0, T]: E$\_$N/)\longrightarrowY and Y is an another E$\_$N/.

  • PDF

A PROXIMAL POINT ALGORITHM FOR SOLVING THE GENERAL VARIATIONAL INCLUSIONS WITH M(·, ·)-MONOTONE OPERATORS IN BANACH SPACES

  • Chen, Junmin;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.315-326
    • /
    • 2013
  • In this paper, a new monotonicity, $M({\cdot},{\cdot})$-monotonicity, is introduced in Banach spaces, and the resolvent operator of an $M({\cdot},{\cdot})$-monotone operator is proved to be single valued and Lipschitz continuous. By using the resolvent operator technique associated with $M({\cdot},{\cdot})$-monotone operators, we construct a proximal point algorithm for solving a class of variational inclusions. And we prove the convergence of the sequences generated by the proximal point algorithms in Banach spaces. The results in this paper extend and improve some known results in the literature.

PROVING UNIFIED COMMON FIXED POINT THEOREMS VIA COMMON PROPERTY (E-A) IN SYMMETRIC SPACES

  • Soliman, Ahmed Hussein;Imdad, Mohammad;Hasan, Mohammad
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.629-645
    • /
    • 2010
  • A metrical common fixed point theorem proved for a pair of self mappings due to Sastry and Murthy ([16]) is extended to symmetric spaces which in turn unifies certain fixed point theorems due to Pant ([13]) and Cho et al. ([4]) besides deriving some related results. Some illustrative examples to highlight the realized improvements are also furnished.

GENERALIZED MULTIVALUED QUASIVARIATIONAL INCLUSIONS FOR FUZZY MAPPINGS

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권1호
    • /
    • pp.37-48
    • /
    • 2007
  • In this paper, we introduce and study a class of generalized multivalued quasivariational inclusions for fuzzy mappings, and establish its equivalence with a class of fuzzy fixed-point problems by using the resolvent operator technique. We suggest a new iterative algorithm for the generalized multivalued quasivariational inclusions. Further, we establish a few existence results of solutions for the generalized multivalued quasivariational inclusions involving $F_r$-relaxed Lipschitz and $F_r$-strongly monotone mappings, and discuss the convergence criteria for the algorithm.

  • PDF

HYBRID INERTIAL CONTRACTION PROJECTION METHODS EXTENDED TO VARIATIONAL INEQUALITY PROBLEMS

  • Truong, N.D.;Kim, J.K.;Anh, T.H.H.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.203-221
    • /
    • 2022
  • In this paper, we introduce new hybrid inertial contraction projection algorithms for solving variational inequality problems over the intersection of the fixed point sets of demicontractive mappings in a real Hilbert space. The proposed algorithms are based on the hybrid steepest-descent method for variational inequality problems and the inertial techniques for finding fixed points of nonexpansive mappings. Strong convergence of the iterative algorithms is proved. Several fundamental experiments are provided to illustrate computational efficiency of the given algorithm and comparison with other known algorithms

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권3호
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.

A NEW EXPLICIT EXTRAGRADIENT METHOD FOR SOLVING EQUILIBRIUM PROBLEMS WITH CONVEX CONSTRAINTS

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.1-22
    • /
    • 2022
  • The purpose of this research is to formulate a new proximal-type algorithm to solve the equilibrium problem in a real Hilbert space. A new algorithm is analogous to the famous two-step extragradient algorithm that was used to solve variational inequalities in the Hilbert spaces previously. The proposed iterative scheme uses a new step size rule based on local bifunction details instead of Lipschitz constants or any line search scheme. The strong convergence theorem for the proposed algorithm is well-proven by letting mild assumptions about the bifunction. Applications of these results are presented to solve the fixed point problems and the variational inequality problems. Finally, we discuss two test problems and computational performance is explicating to show the efficiency and effectiveness of the proposed algorithm.

Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces

  • Olawale Kazeem Oyewole;Lateef Olakunle Jolaoso;Kazeem Olalekan Aremu
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.69-94
    • /
    • 2024
  • In this paper, we introduce an inertial self-adaptive projection method using Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive Banach spaces. The algorithm requires only one projection onto the feasible set without any Lipschitz-like condition on the bifunction. Using this method, a strong convergence theorem is proved under some mild conditions. Furthermore, we include numerical experiments to illustrate the behaviour of the new algorithm with respect to the Bregman function and other algorithms in the literature.