• 제목/요약/키워드: Lipase reaction

검색결과 189건 처리시간 0.029초

유기용매 내에서 중쇄지방질의 합성

  • 권대영
    • 식품기술
    • /
    • 제7권2호
    • /
    • pp.64-73
    • /
    • 1994
  • Using 20 lipases from various microbial origins medium chain glycerides, namely, mono-, di-, and tri-carproyl glycerols from glycerol and acid were synthesized in isooctane. Enzyme reaction was performed at 0.35 M of capric acid, 0.025M of glycerol and the same mass of silica gel to remove water in 5ml of isooctane with 30mg of lyophilized lipase. Among 20 lipases, eleven lipases showed good synthetic activities, especially lipase from Pseudomonas aeruginosa (Lipase PS), Rhizomucor miehei origined lipase and Chromobacterium viscosum lipase (Lipase CV) showed good activities for production of tricaproylglycerol, while Lipase OF-360 (origined from Candida rugosa) and Lipase D (Rhizopus delemar) were good for production of dicaprolyglycerol. The lipases, especially Lipase PS, have high thermal stability at $ 60^{circ}C$, and optimum pH of lyophilization for dehydrating the lipase was pH 6.5.

  • PDF

Lipase-catalyzed Esterification of (S)-Naproxen Ethyl Ester in Supercritical Carbon Dioxide

  • Kwon, Cheong-Hoon;Lee, Jong-Ho;Kim, Seung-Wook;Kang, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1596-1602
    • /
    • 2009
  • A lipase-catalyzed esterification reaction of (S)-naproxen ethyl ester by CALB (Candida antarctica lipase B) enzyme was performed in supercritical carbon dioxide. Experiments were performed in a high-pressure cell for 10 h at a stirring rate of 150 rpm over a temperature range of 313.15 to 333.15 K and a pressure range of 50 to 175 bar. The productivity of (S)-naproxen ethyl ester was compared with the result in ambient condition. The total reaction time and conversion yields of the catalyzed reaction in supercritical carbon dioxide were compared with those at ambient temperature and pressure. The experimental results show that the conversion and reaction rate were significantly improved at critical condition. The maximum conversion yield was 9.9% (216 h) at ambient condition and 68.9% (3 h) in supercritical state. The effects of varying amounts of enzyme and water were also examined and the optimum condition was found (7 g of enzyme and 2% water content).

전자현미경을 이용한 인삼종자 배유세포내의 지질 및 지질가수분해 효소의 분포 (Lipid and Lipase Distribution on Endosperm Cell of Panax ginseng Seed for the Electron Microscope)

  • 유성철;노미전
    • Journal of Ginseng Research
    • /
    • 제16권2호
    • /
    • pp.129-137
    • /
    • 1992
  • This study was carried out to investigate the localization of lipids and lipase activity with lipid staining and cytochemical technique in endosperm cells of Panax ginseng C.A. Meyer seed. In endosperm cells of indehiscent seed, protein bodies facing the umbiliform layer are different in electron density during the various degraded processes. Gradually, protein matrix near the cell wall was lysed and electron lucent inclusions appeared on umbiliform layer. The protein body with high electron density and the spherosome with low electron density were observed in endosperm cells. As a result of lipid staining, electron density of spherosome is more intense than those of the protein matrix within the protein body in endosperm cells of indehiscent seed. Free spherical spherosomes within the umbiliform layer have a high electron density. The spherical spherosomes were more electron densed and were uniform in comparison with the cytoplasmic proteinaceous granules in endosperm cells of seed with red seed coat. The major component of spherosome was determined to be lipid. Lipase activity occurs in the spherosome and near the endosperm cell wall facing the umbiliform layer. Cytochemical reaction products of lipase were observed in the spherosome membrane and in the inner regions of spherosome. After protein bodies were digested, lipase activities were observed in free spherosomes and near the cell wall of endosperm cells. Umbiliform layer composing of fibrillized wall and digested materials of the endosperm cell showed a little lipase reaction products.

  • PDF

Hydrolysis of Olive Oil by Lipase, Immobilized on Hydrophobic Support

  • Jung, Ju-Young;Yun, Hyun-Shik;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권2호
    • /
    • pp.151-156
    • /
    • 1997
  • Two commercially available lipases, Lipase OF (non-specific lipase from Candida rugosa) and Lipolase 100T (1, 3-specific lipase from Aspergillus niger), were immobilized on insoluble hydrophobic support HDPE (high density polyethylene) by the physical adsorption method. Hydrolysis performance was enhanced by mixing a non-specific Lipase OF and a 1, 3-specific Lipolase 100T at a 2 : 1 ratio. The results also showed that the immobilized lipase maintained its activity at broader temperature ($25~55^{\circ}C$) and pH (4-8) ranges than soluble lipases. In the presence of organic solvent (isooctane), the immobilized lipase retained most of its activity in upto 12 runs of hydrolysis experiment. However, without organic solvent in the reaction mixture, the immobilized lipase maintained most of its activity even after 20 runs of hydrolysis experiment.

  • PDF

Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

  • Shafioul, Azam Sharif Mohammed;Cheong, Chan-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.409-414
    • /
    • 2012
  • Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = $80{\pm}3$) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = $27{\pm}1$) for R-(+)-2-(3-methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one.

Dependency of Water Availability on the Esterifying Activity of Candida cylindracea Lipase in Organic Solvent

  • Moor, Izani;Noor, Jamil;Ibrahim che Omar
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권1호
    • /
    • pp.99-102
    • /
    • 2000
  • To establish optimal conditions for esterification by Candida cylindracea, lipase reactions were performed simultaneously, separately, or individually in the varying initial rates of $0.014-0.060\mu$mole free fatty acids consumed min-1g-1. The reactants which were conditioned at aw of 0.12 gave the highest initial rate of esterifying $0.060\mu$mole free fatty acids consumed min-1g-1. These results suggest that the esterifying activity of lipase in an organic system depends on the transfer of available water within the reaction system.

  • PDF

리파아제를 이용한 라세믹 나프록센 2,2,2-트리플로로에틸 씨오에스터의 Kinetic Resolution에서 반응조건 죄적화와 계면활성제 영향 (Optimization of the Reaction Conditions and the Effect of Surfactants on the Kinetic Resolution of [R,S]-Naoroxen 2,2,2-Trifluoroethyl Thioester by Using Lipse)

  • 송윤석;이종호;조상원;강성우;김승욱
    • KSBB Journal
    • /
    • 제23권3호
    • /
    • pp.257-262
    • /
    • 2008
  • 본 연구에서는 lipase를 이용한 라세믹-naproxen 2,2,2-trifluoroethyl thioester의 광학분할 반응을 향상시키기 위하여 반응 용매, 반응 온도, 기질 및 lipase 농도 그리고 교반속도의 변수들을 최적화 하였고, isooctane과 물의 계변을 증가시키기 위한 계면 활성제의 영향을 조사하였다. 조사된 유기용매 중 isooctane이 가장 높은 전환율 (92.19%), $V_s\;(2.340{\times}10^{-2}mM/h)$, E값 (36.12) 그리고 $V_s/(E_t)$ ($7.80{\times}10^{-4}mmol/h{\cdot}g$)를 나타내어 lipase 를 이용한 라세믹-naproxen2,2,2-trifluoroethyl thioester의 광학 분할 반응을 위한 가장 효과적인 유기용매로 판단하였다. 반응 표면 분석법을 이용한 반응조건 최적화에서는 반응 온도 $48.2^{\circ}C$, 기질 농도 3.51 mM, lipase 농도 30.11 mg/ml 그리고 교반속도 180 rpm을 최적 반응 조건으로 도출하였고, 이 최적화된 반응 조건으로 광학분할 반응을 수행한 결과, $V_s$, $V_s/(E_t)$ 그리고 전환 율이 각각 19.54%, 19.12%, 4.05% 증가하였다. 계면활성제로써 첨가된 NP-10은 (S)-naproxen 2,2,2-trifluoroethyl thioester의 가장 높은 전환율 (89.43%)을 나타내었고, 반응속도의 감소를 둔화시켰으며, lipase의 광학선택성 (E=59.24)을 향상시켰다.

1,3-디글리세리드의 선택적 합성에 있어서 상용 고정화 효소의 영향에 관한 비교 연구 (A Comparative Study on the Effect of Commercialized Immobilized Lipases on the Selective Synthesis of 1,3-Diglyceride)

  • 정대원;조미혜
    • 공업화학
    • /
    • 제21권4호
    • /
    • pp.452-456
    • /
    • 2010
  • 최근 1,3-디글리세리드(1,3-DG)는 트리글리세리드(TG)와 대사 기구가 달라, 체지방으로 체내에 축적되지 않는 것으로 알려져 주목을 받고 있다. 본 논문에서는 고정화 리파제인 Lipozyme을 사용한 1,3-DG의 선택적 합성에 관하여 연구하였다. 글리세린과 올레인산(OA)의 몰비를 1 : 2로 고정한 후에 진공 하에서 수행한 에스테르 합성 반응에서 있어서, 반응 온도 및 리파제의 양에 따른 모노글리세리드(MG), DG, TG 및 DG 중의 1,3-DG의 함량 변화를 분석하였다. 온도가 높아질수록 또한 리파제의 사용량이 늘어날수록 OA의 감소 속도로 측정한 반응 속도는 빨랐으며, DG 함량이 최대치에 도달한 이후에는 MG, DG 및 TG의 함량에는 많은 변화가 발생하는 것을 확인할 수 있었다. Novozym을 사용하여 동일한 실험을 한 기존의 결과와 비교하였을 때, 반응성은 Novozym 쪽이 높았으나, 1,3-DG의 선택성은 Lipozyme이 월등하게 높아서, $50^{\circ}C$ 반응에서 DG 중의 1,3-DG 함량이 98%에 달했다.

고정화 효소를 이용한 1,3-디글리세리드의 선택적 합성에 관한 연구 (Study on the Immobilized Lipase-Mediated Selective Synthesis of 1,3-Diglyceride)

  • 정대원;조미혜
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.443-448
    • /
    • 2009
  • 최근 1,3-디글리세리드(1,3-DG)는 트리글리세리드(TG)와 대사 기구가 달라, 체지방으로 체내에 축적되지 않는 것으로 알려져 주목을 받고 있다.본 논문에서는 고정화 리파제를 사용한1,3-DG의 선택적 합성에 관하여 연구하였다. 글리세린과 올레인산(OA)의 몰비를 1 : 2로 고정한 후에 진공 하에서 수행한 에스테르 합성 반응에서 있어서, 반응 온도 및 리파제의 양에 따른 모노글리세리드(MG), DG, TG 및 DG 중의 1,3-DG의 함량 변화를 분석하였다. 온도가 높아질수록 또한 리파제의 사용량이 늘어날수록 OA의 감소 속도로 측정한 반응 속도는 빨랐으며, DG 함량이 최대치에 도달한 이후에는 MG, DG 및 TG의 함량에는 많은 변화가 발생하는 것을 확인할 수 있었다. 반응 온도가 높을수록 또는 고정화 리파제를 10 wt% 사용하였을 때는 DG 및 1,3-DG의 함량이 현저하게 저하되면서 TG가 주생성물이 되었다.

Molecular Modeling and its Experimental Verification for the Catalytic Mechanism of Candida antarctica Lipase B

  • Kwon, Cheong-Hoon;Shin, Dae-Young;Lee, Jong-Ho;Kim, Seung-Wook;Kang, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1098-1105
    • /
    • 2007
  • Quantum mechanical and molecular dynamics simulation analysis has been performed on the model system for CALB (Candida antarctica lipase B) with esters to study the reaction mechanism and conformational preference of catalytic hydrolysis and the esterification reaction. Using quantum mechanical analysis, the ping-pong bi-bi mechanism was applied and energies and 3-dimensional binding configurations of the whole reaction pathways were calculated. Further molecular dynamics simulation analysis was performed on the basis of the transition state obtained from quantum mechanical study to observe the effect of structures of the substrates. Calculation results using substrates of different chain length and chiral configurations were compared for conformational preference. The calculated results showed very small influence on chain length, whereas chiral conformation showed big differences. Calculated results from molecular modeling studies have been compared qualitatively with the experimental data using racemic mixtures of (${\pm}$)-cis-4-acetamido-cyclopent-2-ene-1-ethyl acetate as substrates.