• Title/Summary/Keyword: Liouville function

Search Result 55, Processing Time 0.024 seconds

RIEMANN-LIOUVILLE FRACTIONAL VERSIONS OF HADAMARD INEQUALITY FOR STRONGLY (α, m)-CONVEX FUNCTIONS

  • Farid, Ghulam;Akbar, Saira Bano;Rathour, Laxmi;Mishra, Lakshmi Narayan
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.687-704
    • /
    • 2021
  • The refinement of an inequality provides better convergence of one quantity towards the other one. We have established the refinements of Hadamard inequalities for Riemann-Liouville fractional integrals via strongly (α, m)-convex functions. In particular, we obtain two refinements of the classical Hadamard inequality. By using some known integral identities we also give refinements of error bounds of some fractional Hadamard inequalities.

A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION

  • Arshad, Muhammad;Choi, Junesang;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.549-560
    • /
    • 2018
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function in 1903, due to its usefulness and diverse applications, a variety and large number of its extensions (and generalizations) and variants have been presented and investigated. In this sequel, we aim to introduce a new extension of the Mittag-Leffler function by using a known extended beta function. Then we investigate ceratin useful properties and formulas associated with the extended Mittag-Leffler function such as integral representation, Mellin transform, recurrence relation, and derivative formulas. We also introduce an extended Riemann-Liouville fractional derivative to present a fractional derivative formula for a known extended Mittag-Leffler function, the result of which is expressed in terms of the new extended Mittag-Leffler functions.

SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS

  • Malik, Pradeep;Mondal, Saiful R.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.677-688
    • /
    • 2017
  • The composition of Jacobi type finite classes of the classical orthogonal polynomials with two generalized Riemann-Liouville fractional derivatives are considered. The outcomes are expressed in terms of generalized Wright function or generalized hypergeometric function. Similar composition formulas are also obtained by considering the generalized Riemann-Liouville and $Erd{\acute{e}}yi-Kober$ fractional integral operators.

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE NEW METHODS FOR SOLUTION

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.31-48
    • /
    • 2007
  • The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on bypassing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable function $f(x+h)=E_{\alpha}(h^{\alpha}{D_x^{\alpha})f(x)$.

A GENERALIZATION OF LIOUVILLE′S THEOREM ON INTEGRATION IN FINITE TERMS

  • Utsanee, Leerawat;Vichian, Laohakosol
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.13-30
    • /
    • 2002
  • A generalization of Liouville's theorem on integration in finite terms, by enlarging the class of fields to an extension called Ei-Gamma extension is established. This extension includes the $\varepsilon$L-elementary extension of Singer, Saunders and Caviness and contains the Gamma function.

REFINEMENTS OF HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

  • Xiang, Ruiyin
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.119-125
    • /
    • 2015
  • In this note, two new mappings associated with convexity are propoesd, by which we obtain some new Hermite-Hadamard type inequalities for convex functions via Riemann-Liouville fractional integrals. We conclude that the results obtained in this work are the refinements of the earlier results.

PLANCHEREL AND PALEY-WIENER THEOREMS FOR AN INDEX INTEGRAL TRANSFORM

  • Kim, Vu--Tuan;Ali Ismail;Megumi Saigo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.545-563
    • /
    • 2000
  • An integral transform with the Bessel function Jv(z) in the kernel is considered. The transform is relatd to a singular Sturm-Liouville problem on a half line. This relation yields a Plancherel's theorem for the transform. A Paley-Wiener-type theorem for the transform is also derived.

  • PDF

FRACTIONAL INEQUALITIES FOR SOME EXPONENTIALLY CONVEX FUNCTIONS

  • Mehreen, Naila;Anwar, Matloob
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.653-665
    • /
    • 2020
  • In this paper, we establish new integral inequalities via Riemann-Liouville fractional integrals and Katugampola fractional integrals for the class of functions whose derivatives in absolute value are exponentially convex functions and exponentially s-convex functions in the second sense.

LIOUVILLE THEOREMS OF SLOW DIFFUSION DIFFERENTIAL INEQUALITIES WITH VARIABLE COEFFICIENTS IN CONE

  • Fang, Zhong Bo;Fu, Chao;Zhang, Linjie
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.43-55
    • /
    • 2011
  • We here investigate the Liouville type theorems of slow diffusion differential inequality and its coupled system with variable coefficients in cone. First, we give the definition of global weak solution, and then we establish the universal estimate (does not depend on the initial value) of solution by constructing test function. At last, we obtain the nonexistence of non-negative non-trivial global weak solution within the appropriate critical exponent. The main feature of this method is that we need not use comparison theorem or the maximum principle.

Certain Inequalities Involving Pathway Fractional Integral Operators

  • Choi, Junesang;Agarwal, Praveen
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1161-1168
    • /
    • 2016
  • Belarbi and Dahmani [3], recently, using the Riemann-Liouville fractional integral, presented some interesting integral inequalities for the Chebyshev functional in the case of two synchronous functions. Subsequently, Dahmani et al. [5] and Sulaiman [17], provided some fractional integral inequalities. Here, motivated essentially by Belarbi and Dahmani's work [3], we aim at establishing certain (presumably) new inequalities associated with pathway fractional integral operators by using synchronous functions which are involved in the Chebychev functional. Relevant connections of the results presented here with those involving Riemann-Liouville fractional integrals are also pointed out.