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ABSTRACT. We here investigate the Liouville type theorems of slow diffusion differential in-
equality and its coupled system with variable coefficients in cone. First, we give the definition
of global weak solution, and then we establish the universal estimate ( does not depend on the
initial value ) of solution by constructing test function. At last, we obtain the nonexistence
of non-negative non-trivial global weak solution within the appropriate critical exponent. The
main feature of this method is that we need not use comparison theorem or the maximum prin-
ciple.

1. INTRODUCTION

In this paper, we consider non-negative global weak solutions of the slow diffusion differ-
ential inequality with variable coefficients

?;: — div(|z|*Du™) > |z|Pu?  in K x (0,00)
and its coupled system in cone, where2 > a >1—-N,2—a+mB >0, N >3,g >m > 1.
The inequality appears in the diffusion theory, biological theory and biological population
dynamics, etc(see [2, 3, 4, 8]). Recently some authors have studied Liouville type theorems
for parabolic differential inequality and its coupled system in R x (0,00). For example,
Kartsatos et al. studied the nonexistence of the global solution within suitable critical range
when o = 8 = 0, m = 1, see [11]. In paper [18], Piccirillo considered entire solutions for a
class of general evolution of inequality by using test function method which was introduced by
Mitidieri and Pohozaev [16, 17]. For the studies of elliptic problems, we refer the readers to
see [9, 10, 16]. In the case of the cone domain, Kondrat’ev studied boundary problems of linear
elliptic equations by using comparison principle, see [ 5, 12, 15, 19, 21]. The research of the
corresponding parabolic problems was initiated by Bandle and Levine [1]. For the developed
theories of the linear and semi-linear parabolic problems in cone, we refer to the classical
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papers of Laptev [13, 14] and the references therein. G.Caristi studied semi-linear parabolic
inequalities by test function method, see [6]. In paper [13], G.G. Laptev studied the semilinear
parabolic inequality and its coupled system with variable coefficients by using test function
method. Here we use the nonlinear capacity in the form of the test function method to develop
the Liouville type theorems for more generalized parabolic inequality in cone.

Our goal is to study the Liouville type theorems of slow diffusion parabolic differential in-
equality and its coupled system with variable coefficients in the diffusion and source terms.
The difficult is to find how the variable coefficient exponents «, 8 and nonlinear exponents
m, ¢ impact on the global weak solution and its critical value closely links with the first eigen-
value corresponding to Laplace-Beltrami operator of the boundary problem with homogeneous
boundary conditions in cone K,,. Moreover, we do not give any regularity assumptions on ini-
tial value, and then it does not lead to a good ‘trace’ on hyperplane t=0. Besides, we do not use
comparison theorems or the maximum principle.

The plan of this paper is as follows. In Section 1, we introduce some basic knowledge,
symbols and the process of constructing test function. In Section 2, we prove the Liouville
type theorems of global weak solution of slow diffusion inequality. In Section 3, we prove the
Liouville type theorems of its coupled system.

2. BASIC KNOWLEDGE REVIEW

In this section, we simply introduce some relevant basic knowledge and marks and then we
detail the process of constructing test function.

Let K, be a subdomain of the unit sphere SV ~! (N > 3) with piecewise smooth boundary
0K,,. A cone K is a set that can be described as follows in the spherical system of coordinates
(r,w), 0 < r < oo,we SVNL,

K={z=(rw): 0<r<oo, we K,}

We denote the lateral surface of a cone by 0K.

Let 2 be an unbounded subdomain of RV*+! with piecewise smooth boundary. We will use
the well-known Sobolev anisotropic spaces W2' () and the local space L{ (Q) whose ele-
ments belong to Lq(Q/) for each compact subset Q' (Q' C 2). Denote the space of continuous
function by C'(€2) and the space of smooth functions by C"™(£2) on the closed domain €2. The
expression Du = (g—;)) denotes the vector of partial derivatives and Dux Dy = Zf\i 1 gz gfi
denotes product of the vector of partial derivatives for two differentiable functions u(x) and
¢(x). Symbol g—z denotes the derivative of the function « in the direction of the outward nor-
mal n to the boundary 0K of the cone.

Recall that the Laplace operator A has the following form

1 o(rN-12) 1 9 N-10 1
rN-1 or +r2Aw_w r E—i_rj “
where A, is the Laplace-Beltrami operator on the unit sphere SV ~1 © R™V. Moreover, through-
out this paper we use the first (the least) eigenvalue A\, = A1 (K,,) > 0 and the corresponding

A:
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eigenfunction ¢(w) of the operator A, which solve the problem

¢=0 on 0K,. (2.1)

It is well known that ¢(w) > 0 for w € K, and assume that ¢(w) < 1.

In the following, we will detail the process of constructing test function. In fact, we construct
test functions by using the separation of variables. Therefore, we consider the corresponding
t-function firstly and then x-function.

We begin with a standard cut-off function ((y) € C*°(R™) such that 0 < ((y) < 1 when
0<y<1¢(y)=1andwheny > 2, ((y) =0.

Next, we construct a function 7(y) such that the pointwise inequalities

WP < e Hy), 0" W) < e’ y)
hold with some constant ¢, for all 1 < p < po, where py is fixed. It is sufficient to take

n(y) = (C(y))*.

{ A,d+Xp=0 in K,

Then
7 ()P = (2po)P¢PPoP=12P0P| ([P = (2pg) P20 P | PP~ < P (y),

1" ()P < (2po)P¢PoPDCEO2 ((2p0 — 1)ICP + CIC") < e (y).
Introduce a parameter p which will be increasing without limit in our subsequent construc-
tions and a positive exponent §. And we also consider the function n(p%) of the variable

t(t > 0). By directly calculating, we obtain

t 1
/ 2po—1 ~/
n' (=) = 2poC* (',
P Pz
SO ; y
W(ﬁ)’p - (2p0)pg2po(p—1)c2po—p|C/‘pp—9p < cnp—Opnp—l(ﬁ),
and then
|dn(p%)|p
/ ity oyt S / ity Cnp” Pt = cp™ P, (22)
suppl —£2- TP~ (55) supp| —£— |
here .
dﬁ(*e)
supp|——| = {o’ <t < 20"}

Now we perform similar constructions for the test function of the variable x. However, since
we deal with a conical domain in this case, we consider a product of two functions

r*n(r/p)
where r = |z| and s > 0. Hence, we have

o) o
szsr 177(;)4'7“77(;);,
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and
a(rn (%))

’ 1
or

P = |sr i (5) + o ()
[P = (p) C)or

1
< eI (L) el (D[P =
P p p’p

1

< ¢, sPrPs— NP 1( ) + cprPoe P~ l(f),

P p p’p

P
p(s=1),p r
< CpsyT’ n’ (p)(l + pp)

where constant ¢, is independent of p and r. A similar estimate can also be established for

the second derivative

Prn(L) o

or? or
1
=s(s—1)r*2 + sro7 Ly + s (D)2 4Dy =
(s = 1)r*="n(-) n()p U()p (p)pQ
5—2 / N
=7 lsls = n(2) + 25 (7) 7 07 (0) 5],
and ,
9°(r°n(%)) r r ror?
PP = pP=D[(s(s — D)n(=) + 251 (=)= + 1" (=) =]?
52 [(s( )U(p) n(p)p (p)pg]
< Do~ )PP+ 20, (1 eyl )P ]
! Tt T
< P52 [e P (s — 1)PyP™ 1( ) + 2¢,sP e (© )ﬁ—i—c c npfl(f)ﬁ}
- g p plpp T Nplp2
o T P 2P
N P -]

Then we clarify the meaning of the above estimates. First, we introduce the Laplace operator
/. We consider the functionr*®(w). Taking account of the equality A, ® = —\, P, we obtain

2 —10(r*®(w) + H AL (r5d(w
p) = Erpoa + N1+ a0,

N-1

= s(s — 1)r"2d(w) +

L (A B (w))

sreTId(w) + .
=5(s — 1)r*2®(w) + s(N — 1)r* 2®(w) — A\ 2®(w))

=57 2P(w){s(s — 1) + s(N — 1) — A\, }.
Let us introduce the parameters
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st =022 4 J(A52)2 4,
S*:N2—|—(_)+)\w

The quantities s*, s, are the roots of the polynomial in the curly brackets in the above
expression for A(r*®(w)). We consider now the function {(z) = £(r,w) = r**®(w), so there
is the identity A¢ = 0 in K. It is also obvious that it vanishes at K.

‘We now establish an estimate which is similar to (2.2).

Set () = £()n(2) = r* (£)®(w), we observe that

P
0% — 10y
Aty = 8r2p + r arp

where A1), = 7 n(m)(—)\w(l)) = =ty
Taking account of the above estimates for the derivatives of the product rsn(g), we obtain

(2.3)

7Aw¢p7

2 N-10 M\, T
A p_(Z_ T Y Aoyesoc Dy g
AU@P = (G + 5 = )PP
o N-—1 AL
—1/T\ p(si—2 r 1 se—1
< Cpsyl” (;)Tp( )(1+pp+p )+ () epay”™ (p)?“p( )(1+pp)+r2p
r2p 1 rP 2P
1 562 _ -1
<en’” (p)r”( ’<1+ — + ) = @ g (U 5+ ).
By the construction of 77(| ‘) = 1 for \x| < p, we obtain A,(x) = A&(x) = 0 and
supp| A, ()| = {K N{p < |z| < 2p}}, hence (1 + ;—5 + %) is bounded on supp| Ay, (z)|,
what is more

p(l)

* __ * __
rs QPSCPS 2p’

therefore
| Ay ()P < ()P~ p” 2,

A p 2p p—1 N-1
[ lewer, @Dp N < g,
suppl Ao Vp () p YK (z)p?P—s

In this way, we take the composite test functlon in the following form

o) = n<;>wp<x>.

At the same time, we can also get the accurate estimate about test function

SO

¢
&pp |d”7(pT9)|p

_ddt</ w(aj)dxx/ v, —a gt
//suz)pl 22| ©p K N{r<2p} ’ suppldnii’ie)lnp_l(pi@)
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2p
S/ rSdr X ¢ pr(pfl)

—c P 0(p— 1)/ 1+s*d7‘

= cpp* T 0p-1) (2.4)
A t)|P 207 AN, |P
// 120, D" ‘ppﬁx; ) dxdt</ (e)dt/ 1200 ;Ofl’ d
supp| A, | 0 P supp|Dgp|  Pp
2p? A
/ 1dt/ | 90”' dx < ¢ p? 2P Fs N, (2.5)
suppl Dol P

When 6 = 2, the powers on the right-hand sides of two above-mentioned inequalities are
the same, hence we get the estimate

8%0

AV _

// —1pd:1:dt < cop st N2
supp| %22 o T0pp| SOp

3. LIOUVILLE THEOREM OF SLOW DIFFUSION INEQUALITY

In this section, we obtain the Liouville theorem of the slow diffusion inequality. Now we
consider the parabolic type inequality as following

0
a% — div(|z]*D (™)) > |z]Pul, (3.1)
where

2>a>1—-N2—a+mB>0,N>3,u>0,g>m>1.

Then we interpret the definition of a nonnegative weak solution.

Definition 3.1. Let u(z,t) € C(K x [0,00)). A non-negative function u(z,t) is called a
weak solution of (3.1) if for each non-negative test function o(z,t) € Wa'(K x (0,00))
with compact support with respect to v = |z| and t such that |y »(0,00)) = 0, we have the
following integral inequality holding

/ / umx\o‘agodxdt—/ /udacdt—/ /umdiv(:n\o‘D@)dxdt
o Jor on 0o JK

oo
> / / |z [P udpdadt —i—/ u(z,0)p(z,0)dx. (3.2)
o JK K
Theorem 3.1. For 5 5
—a+m
l<m<q<qg = —_—
msa=4 m+s*0‘+2—a’

the solution of (3.1) is identical to zero, where

N a+ N -2 a+ N -2
e

24+ -
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Proof. We proceed by contradiction. Assume that u(z, t) is not identical to zeroand 1 < m <
q < q*. We choose a test function in a form similar to the introduction. Draw into an exponent

6 > 0, and set , () = Ean(12), 9p(2,t) = n( L) ¢, (x), where
Ca(z) = &a(r,w) = r*ed(w).

In this case, taking place of the Laplace operator we have the operator

a+N-—-10 1

o L
Aa Edl'l}(‘x| D) =T {ﬁ E—FT’?AM}

By calculation in K, so

P a+N-106 e}
or? r (97’ Pula

a+N -1

Anén = div(|z|*DEy) = r*{

1
= 7540850 — 1) 20 (w) + Sxar 1D (w) + — (= Aur¥ @ (w))}
T
= 1500 (Sxa — D)o 720 (w) 4 Syq(a+ N — D)r*e720(w) — \,r*e20(w))}
= 72 s, (Suq — 1) + sua(a + N — 1) = A\, }P(w) =
The first integral on the left-hand side of (3.2) is non-positive. Indeed, we have

g = 7"8*0‘ a¢(w> S 0,

on on,,
where n,, is the outward normal to the boundary of K, and the non-positiveness of the deriv-
ative 8¢( )isa consequence of Hopf’s Lemma, because the function ¢(w) is positive in K|,

and Vanlshes at the boundary. By applying Holder inequality to the second and third integrals
on the left-hand side of (3.2), we obtain

/ u(z,0)p (:I:,O)da:+/ / |z|Pulpdrdt
// s u| |d1:dt—|—// ™ Aappldadt
supp| 5| supp|Aapp|

a@p 1
// wlp,dxdt)a q X // ) /71 da:dt)7
supp| %22 | supp| 5L | Pp

m Aa m
H// w%wmqw// Liﬂ—dﬁ)q, (3.3)
supp|Aappl supp|Aappl g=m

Pp
where L1
m -m

Lol _ymya=m_y

q9 q q q
Similar to the derivation in the introduction, we can also obtain integral estimate as follows

d(p,,
// ) dxdt < cp 00 HsatO+ N (3.4)
supp| 5 | ‘Pp
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9
A qg—m —a)
// ‘ a(plii dxdt < Cp q m q+9+5*a+N’ (35)
supp|Aappl wa "

Set —0¢" + S4q + 0+ N = ( )q—|—0+s*a+N we obtain

Hence the powers on the right-hand sides of estimates (3.4) and (3.5) are the same and we get

q
-8 A, —m
// uq(f(x)dxdtgpq—gl// Mool Soi’iq daxdt
wp=£() supp|Aappl g—m

Pp

—(2=a)
< cop q—m +8xa+N— l

that is

a)
// |‘T|Buq§( )dl’dt < pﬁp q m +Sxa+N— =L
wp=E£()
= copfff)ﬂ* +N— 5":”.
By +/_]. 1<m<q<q :m+2*ao—:gmﬁ Weknow
=2 Bm

+ e+ N — 2 <0,
q—m qg—m

/ / |z|Pudé dadt = 0.
0o JK

Since ¢ is positive in K, it follows that © = 0 which is in contradiction with our assumption.
0

what is more

4. LIOUVILLE THEOREM OF COUPLING INEQUALITIES

In this section, we shall prove the Liouville theorem of coupling inequalities with variable
coefficients.

We consider slow diffusion coupling inequalities (4.1) with variable coefficients as follows.

gt — div(|z|*Du™) > |z|Pv® in K x (0,00)
— div(|z|*Dv™) > |z|Pu® in K x (0,00) (4.1)
u 2 0, v>0.

where

2>a>1—-N, 2—a+mp>0, N>3, m>1, ¢ >m, g2 >m.
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Definition 4.1. A pair of non-negative functions u,v € C(K x [0, 00)) is called a weak solution
of (4.1) if for each non-negative test function (x,t) € wit (K x (0,00)) with compact
support with respect to v = |x| and t such that |y(kx(0,00)) = 0, we have the following
integral inequalities holding

/ / u™| x| S"d:cdt—/ / d:cdt—/ / wmdiv(|z|* Do) dwdt
oK
>/ / $|Bvq1g0dxdt+/ u(z,0)p(z,0)dz,
0 K K

Theorem 4.1. For

{v }> 72
max
L2) = 2—a+mp’
the solution of (4.1) is identical to zero, where
qa+m Q2 +m
= 2 72 = 2
qiq2 —m qiq2 —m

Proof. Assume u(z,t), v(z,t) are not identical to zero. We choose the same test function as
that in the theorem 3.1, that is ¢, (z,t) = n(p%)wp(x). By using Holder inequality, we obtain
the integral estimates

/ u(z,0)p,(z, O)da:—l—/ / |2[Pvt o, dadt

// u\ \dacdt—l—// u™Aagppldadt
supp| %22 | supp\Aasop\
1 8<Pp|q2 L/
< (// o UPppdrdt)az x (// ) T dxdt) 2
supp| =L | supp| 5| SOp
Aapp|®m  m
m qo—m ga—m
—|—(// up,drdt) 2 x (// %diﬂdt) 2
supp| Aoyl supp|Aappl az=m

Pp
Ay, |om
m qp—m qgo—m
<[], urgdodt) s x ([ [ Mool ™™ goan ™", (12)
supp| 5 +Aapp| supp|Aappl o2

/ v(z, O)gop($,0)daz+/ /|x5uq2gopd:cdt

// \dacdt—l—// V" Agpp|ddt
supp| 252 supp\Aasop\

8<Pﬂ|q1 L/

// v, dadt) X // dxdt)n
supp| a”l supp| %5 -
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a1

m A q1—m 9 —m

+(// U‘h(ppda:dt)ﬁ X (// %dwdt) o
supp|Aappl supp|Aapp] q1—m

Pp
A a1
m q1—m qgp—m
< / / 5 v ppdadt)n x ( / / %dagdt)T . (4.3)
supp| L +Aap supplAaps T
p
Here we denote
a2
= / / A =77 )t
supp|Aapp| R
[ Aap| 77
Jo = / / e dadt.
supp\Aagop| @Zlim

For

84,0,0 q
// , | d:cdt < cpf(?q +sm+9+N
supp| | SDp

A _(2-a)g
// | aSOp’ dxdt <cpam +9+s*a+N7
supp|Aappl pa ™

we obtain § = (2_;_)# > (, and thus the powers on the right-hand sides of estimates are the
same, furthermore we mark

2—a
Jp <cp 2-m ,Jo

Due to (4.2) and (4.3), we have

B,
// - |z|v T @, dadt
supp| £ +Aap)]
Scpﬁ// ) vt ppdxdt
supp| L +Aatpp|
m e
< (// oo uPppdrdt)e x J; 2,
supp| 5 +Aappl
// |z |Putp,drdt
dep
supp| 3£ +Aappl
§cp6// ) upydrdt
supp| 5 +Aapp|

m a-m
< (// o vl pydedt)a x J,
SUPP|Ttp+Aa4PP|

_ 22—«
<cp am Tt
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Then we see that
// vt ppdadt
A¢p
SUPP| ot +Aa ‘Pp|
< (// o up,drdt)e x J, 2 pF
supp| £ +Aatppl
m q1—m m g2 —m
= ((// d¢ vippdadt) i x Jy M p~P)e x gy 2 p
supp| 3£ +Aappl
That is
m2 m(q) —m) _ Bm 2=
// v, dxdt) ae < J, M2 pa J © p—57
SUPP| - TAap)]
1.e.
m2 m(qy—m) _ Blag+m) qo—m m2

Ly

// v, da?dt)fnqz < (J wn q2
supp| 222 22+ Aappl

Simplify the exponents of these estimates:

oo
/ / |z |Pvt g dadt
0o JK

m 92—

< (// o uPp,drdt) e x J; w
supp 222+ Aagy|

a1 —-m

S«// Vg drdt)n x Jy T p Pdrdt)n x J, ©
supp| 2 + Aot

g2—m

m2 m(qy—m) Bm 92=m
// vl,drdt)ne x J, M poa J 2
SUPP‘ ot T Aappl
mlay —m) 5(q2+m) 2om _m? ma=m) gy, g2-m
<(Jy M op )qm aaz=m? xJy M ope Jp T
w(miQ2 1) az— —m® 1) Blagtm)m® _ pm
=J, 92 “qraz-m J, 92 “aqraz—m P az(aa2—m?) a2
m(g1 —m) a1(92=m)  gm(qy+m)

_ J2q142*m2 x Jqqu—me 9192 —m

49192—4q1+mq; — —Bmy1

71(2—a) m(2-a) +(S +N) .
1

<C’p q192—m  q192—m
— Cp—(Q—a)’71+(s*a+N)—ﬁm’71'

By max{vy1,v2} > ;EZ%, if v1 > 79, we can receive
sh+2—a

m 2 2 —a+mp’
Bm~y1 < 0, the functions v(x, t) identically vanishes

that is, when —(2 — @)y1 + (S4a + N) —
which is in contradiction with our assumption.
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In a similar way,

[oe)
/ / \x|6uq2<ppdxdt < Cp_(Q_a)72+(5*a+N)_Bm72.
0 K

If v2 > 71, we can see that when

_(2 - 04)72 + (S*a + N) - Bm72 < 07

the functions u(z, t) identically vanishes which is in contradiction with our assumption. Ob-
viously, if one of the functions u(z,t) and v(z,t) is identical to zero and then so is the sec-

ond.
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