• Title/Summary/Keyword: Link-motion

Search Result 267, Processing Time 0.027 seconds

Transmission Characteristics on Wire-Driven Links of a Bridge Transported Servo Manipulator for the ACP Equipment Maintenance (사용후핵연료 차세대관리 공정장치 유지보수용 천정이동 서보 매니퓰레이터 와이어 구동부 동작특성)

  • 박병석;진재현;송태길;김성현;윤지섭
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.189-199
    • /
    • 2004
  • A bridge transported servo manipulator (BTSM) system for the advanced spent fuel conditioning process (ACP) has been developed to overcome the limitation of access, which is a drawback of mechanical master-slave manipulators (MSM) for the equipment maintenance. The servo manipulator is composed of a slave manipulator attached to the telescoping tubesets equipped with the overhead bridge installed at a hot cell and a master manipulator installed at an out-of-hot cell. Each manipulator has 7 degrees-of-freedom (DOF): a body rotation, an upper-arm tilt, a lower-arm tilt, a lower-arm rotation, a wrist pan & tilt, and a grasp motion. A wire-driven mechanism for a lower-arm rotation, a wrist pan and tilt, and a grasp motion of the manipulator has been adopted to increase the handling capacity compared to the manipulator weight and decrease the friction. The main disadvantage of the wire-driven mechanism is that if one link is in motion, other links can be affected. In this paper, the transmission characteristics among the wire-driven links have been formulated to overcome this drawback. The unexpected behaviors are confirmed by analyses of transmission characteristics as well as experiments. Also, the experimental results show that the unexpected behaviors are greatly decreased by the proposed compensation equations.

  • PDF

Dynamic Manipulability Analysis of Underwater Robotic Arms with Joint Velocities (관절속도를 가지는 수중로봇팔의 동적 조작도 해석)

  • JEON BONG-HWAN;LEE JIHONG;LEE PAN-MOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.204-209
    • /
    • 2004
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The Manipulability is a functionality of manipulator system in a given configuration and under the limits of joint ability with respect to the tasks required to bt performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method are presented. The dynamic equation of motion of underwater manipulator is derived from the Lagrange - Euler equation considering with the hydraulic forces caused by added mass, buoyancy and hydraulic drag. The hydraulic drag term in the equation: is established as analytical form using Denavit - Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based on Manipulability Ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torque in joint space while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

  • PDF

Development of a Biped Walking Robot Actuated by a Closed-Chain Mechanism

  • Choi, Hyeung-Sik;Oh, Jung-Min;Baek, Chang-Yul;Chung, Kyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.209-214
    • /
    • 2003
  • We developed a new type of human-sized BWR (biped walking robot), named KUBIR1 which is driven by the closed-chain type of actuator. A new type of the closed-chain actuator for the robot is developed, which is composed of the four-bar-link mechanism driven by the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of 6 D.O.F joints. For front walking, three pitch joints and one roll joint at the ankle. In addition to this, one yaw joint for direction change, and another roll joint for balancing the body are attached. Also, the robot has two D.O.F joints of each hand and three D.O.F. for eye motion. There are three actuating motors for stereo cameras for eyes. In all, a 18 degree-of-freedom robot was developed. KUBIR1 was designed to walk autonomously by adapting small 90W DC motors as the robot actuators and batteries and controllers are on-boarded. The whole weight for Kubir1 is over 90Kg, and height is 167Cm. In the paper, the performance test of KUBIR1 will be shown.

  • PDF

Optimal feedback control of a flexible one-link robotic manipulator (유연한 단일링크 로봇 조작기의 최적귀환제어)

  • 하영균;김승호;이상조;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.923-934
    • /
    • 1987
  • A flexible one-link robotic manipulator is modelled as a rotating cantilever beam with a hub and tip mass. An active control law is developed with consideration of the distributed flexibility of the arm. Equation of motion is derived by Hamilton's principle and, for modal control, represented as state variable form using Galerkin's mode summation method. Feedback coefficients are chosen to minimize the linear quadratic performance index(PI). To reconstruct the complete state vector from the measurements, an observer is proposed. In order to suppress vibration of the manipulator arm to desirable extent and to obtain accuracy of the positioning, weighting factor of input in PI is adjusted. Spillover effect due to the controller which controls several important modes is examined. Experiment is also performed to validate the theoretical analysis.

Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms (수중로봇팔의 동역학 모델링과 동적 조작도 해석)

  • Jnn Bong-Huan;Lee Jihong;Lee Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기를 이용한 블레이드 피치 조종 시스템의 동역학 모델)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.111-118
    • /
    • 2022
  • An electro-mechanical actuator (EMA) is an actuator that combines an electric motor with a mechanical power transmission elements, and it is suitable for urban air mobility (UAM) in terms of design freedom and maintenance. In this paper, the author presents the research results of the EMA that controls the rotor blade pitch angle of UAM. The actuator is based on an inverted roller screw and controls the blade pitch angle through a two-bar linkage. The dynamic equations for the actuator alone and the blade pitching motion with actuator were derived. For the latter, the equivalent moment of inertia is variable depending on the link angle due to the two-bar linkage. The variations of the equivalent moments of inertia are analyzed and compared in terms of the nut motion and the blade pitch motion. For an example model, the variation of the equivalent moment of inertia of the former is smaller than the latter, so it is judged that the dynamic equations derived from the point of view of the nut motion is suitable for the controller design.

The design of Ground Flight Termination System for Space Launch Application (위성발사를 위한 지상국비행종단지령장비 설계)

  • Lee, Sung-Hee;Bae, Young-Jo;Oh, Chang-Yul;Lee, Hyo-Keun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.229-235
    • /
    • 2008
  • The ground flight termination system(GFTS) could be used for the termination of launch vehicle in flight motion when the launch vehicle deviates from the designated route due to the system malfunction or failure as well as the launch vehicle can't be tracked by the ground tracking system. This paper introduces the basic concept and design of the ground flight termination system to be used for KSLV launch mission in NARO space center. In order to design the optimal ground flight termination system for KSLV launch application, the operational concept reflected on the flight trajectory and system characteristics of KSLV launch vehicle should be considered. Moreover the RF link budget analysis, and the analysis for system availability and reliability are done. Based on the analysis above, the each subsystem of ground flight termination to transmit the termination signal in stable is designed for KSLV launch mission.

  • PDF

Design of lift-down kitchen cabinet for elderly and disabled (고령자 및 장애인을 위한 승강형 주방 상부장 설계)

  • Kibum Shim;Hoon Shim;Geon-Hyeok Lim;Jiwon Jang;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.465-470
    • /
    • 2024
  • Kitchen cabinets are widely used for their spacious storage and efficient use of space, but their high installed location makes it difficult for the elderly and disabled to access. Therefore, in this paper, we propose a new height-adjustable kitchen cabinet that can be used more easily and safely. The lift-down range of cabinet was set considering the installation location of cabinet for efficient use of kitchen space and the maximum height accessible to the elderly and disabled, and the link geometry and driving method of the complex link mechanism were determined through the mechanism design procedure to ensure that the selected floor come down safely along the optimal descend path. In addition, the appropriate motor and control algorithm were added to allow the user to descend to the desired height with a simple button operation. It was confirmed through actual production that the proposed linkage mechanism performs the desired lift-down motion.

A Study on the Dynamic Response of Steel Highway Bridges Using 3-D Vehicle Model (3차원(次元) 차량(車輛)모델을 사용(使用)한 강도로교(鋼道路橋)의 동적응답(動的應答) 관(關)한 연구(硏究))

  • Chung, Tae Ju;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1055-1067
    • /
    • 1994
  • This paper is presented to perform linear dynamic analysis of bridges due to vehicle moving on bridges. The road surface roughness and bridge/vehicle interaction are also considered. The bridge and vehicle are modeled as 3-D bridge and vehicle model, respectively. The road surface roughness of the roadway and bridge decks are generated from power spectral density(PSD) function for good road. The PSD function proposed by C.J. Dodds and J.D. Robson is used to describe the road surface roughness for good road condition. The vehicles are modeled as two nonlinear vehicle model with 7-D.O.F of truck and 12-D.O.F of tractor-trailer and the equations of motion of the vehicles are derived using Lagrange's equation. The main girder and concrete deck are modeled as beam and shell element, respectively and rigid link is used between main girder and concrete deck. The equations of motion of the vehicles are solved by Newmark ${\beta}$ method and the equations of the motion of the bridges are solved by mode-superposition procedures. The validity of the proposed procedure is demonstrated by comparing the results with the experimental data reported by the AASHO Road Test. The comparison shows that the agreement between experiment and theory is quite satisfactory.

  • PDF

Virtual Model Control of a Posture Balancing Biped Acrobatic Robot with Fuzzy Control for Pendulum Swing Motion Generation (진자 흔들기 퍼지 제어기가 추가된 가상모델 제어 2족 곡예로봇 자세 균형 제어)

  • Lee, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.904-911
    • /
    • 2001
  • A broomstick swinging biped acrobatic controller is designed and simulated to show capability of the system of controllers: virtual model controller is employed for the robot\`s posture balancing control while a higher level fuzzy controller modulate the one of the virtual model controller\`s parameter for the pendulum swinging motion generation. The robot is of 7 degree-of-freedom, 8-link planar bipedal robot having two slim legs and a body. Each leg consists of a hip joint, a knee joint, an ankle joint and the body has a free joint at the top in the head at which a freely rotating broomstick is attached. We assume that the goal for the acrobat robot is to maintain a body balance in the sagittal plane while swinging up the freely up the freely rotating pendulum. We also assume that the actuators in the joints are all ideal torque generators. The proposed system of controllers satisfies the goal and the simulation results are presented.

  • PDF