DOI QR코드

DOI QR Code

Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator

전기-기계식 구동기를 이용한 블레이드 피치 조종 시스템의 동역학 모델

  • Jin, Jaehyun (Dept. Aerospace Engineering/Center for Aerospace Engineering, Sunchon National University)
  • Received : 2021.09.08
  • Accepted : 2022.01.17
  • Published : 2022.02.01

Abstract

An electro-mechanical actuator (EMA) is an actuator that combines an electric motor with a mechanical power transmission elements, and it is suitable for urban air mobility (UAM) in terms of design freedom and maintenance. In this paper, the author presents the research results of the EMA that controls the rotor blade pitch angle of UAM. The actuator is based on an inverted roller screw and controls the blade pitch angle through a two-bar linkage. The dynamic equations for the actuator alone and the blade pitching motion with actuator were derived. For the latter, the equivalent moment of inertia is variable depending on the link angle due to the two-bar linkage. The variations of the equivalent moments of inertia are analyzed and compared in terms of the nut motion and the blade pitch motion. For an example model, the variation of the equivalent moment of inertia of the former is smaller than the latter, so it is judged that the dynamic equations derived from the point of view of the nut motion is suitable for the controller design.

전기-기계식 구동기(EMA)는 전기 모터와 기계적 동력전달 요소를 결합한 것으로 설계 자유도와 유지보수 측면에서 도심 항공 모빌리티(UAM)에 적합하다. 본 논문에서는 UAM의 로터 블레이드 피치각을 조종하는 EMA에 대한 연구 결과를 제시한다. 구동기는 역구동형 롤러 스크류를 기반하며, 2절 링크를 통하여 블레이드 피치각을 조종한다. 구동기만의 동역학과 이것을 포함한 블레이드 피치운동의 동역학 방정식을 유도하였다. 블레이드 피치 동역학 방정식의 경우 링크의 영향으로 등가 관성모멘트는 링크 각도에 따라 변한다. 넛트 운동의 관점과 블레이드 피치 운동의 관점에서 등가 관성모멘트의 변동을 분석·비교하는 과정을 제시하였다. 사례로 선정한 모델의 경우에 전자의 등가 관성모멘트 변동이 후자에 비하여 작았으며, 그래서 넛트 운동의 관점에서 유도한 모델이 제어기 설계에 적합하다고 판단한다.

Keywords

Acknowledgement

본 논문은 2021년도 정부(산업통신자원부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행된 연구 결과임(No.20015907, eVTOL 모빌리티용 고신뢰도, 고속, 고출력 다중화 전기식 작동기 개발).

References

  1. Yoon, G., Park, H. and Jang, K., "The State of the Art and Application of Actuator in Aerospace," Journal of the Korean Society of Propulsion Engineers, Vol. 14, No. 6, 2010, pp. 89~102.
  2. Mare, J. and Fu, J., "Review on Signal-By-Wire and Power-By-Wire Actuation for More Electric Aircraft," Chinese Journal of Aeronautics, Vol. 30, No. 3, 2017, pp. 857~870. https://doi.org/10.1016/j.cja.2017.03.013
  3. Qiao, G., Liu, G., Shi, Z., Wang, Y., Ma, S. and Lim, T., "A Review of Electromechanical Actuators for More/All Electric Aircraft Systems," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232, No. 22, November 2018, pp. 4128~4151. https://doi.org/10.1177/0954406217749869
  4. Samjong KPMG, Samjong Insight: UAM, Vol. 70, 2020, p. 7.
  5. https://en.wikipedia.org/wiki/Roller_screw
  6. https://www.olsenactuators.com/
  7. http://rollvis.com/swiss/?lang=en
  8. Velinsky, S., Chu, B. and Lasky, T., "Kinematics and Efficiency Analysis of the Planetary Roller Screw Mechanism," Journal of Mechanical Desine, Vol. 131, No. 1, January 2009, 011016. https://doi.org/10.1115/1.3042158
  9. Jones, M. and Velinsky, S., "Kinematics of Roller Migration in the Planetary Roller Screw Mechanism," Journal of Mechanical Desine, Vol. 134, No. 6, June 2012, 061006. https://doi.org/10.1115/1.4006529
  10. Jones, M. H., Velinsky, S. A. and Lasky, T. A., "Dynamics of the Planetary Roller Screw Mechanism," Journal of Mechanisms and Robotics, Vol. 8, No. 1, February 2016, 014503. https://doi.org/10.1115/1.4030082
  11. Karam, W. and Mare, J., "Modelling and Simulation of Mechanical Transmission in Roller Screw Electromechanical Actuators," Aircraft Engineering and Aerospace Technology, Vol. 81, No, 4, 2009, pp. 288~298. https://doi.org/10.1108/00022660910967273
  12. Fu, J., Mare, J. and Yongling, F., "Modelling and Simulation of Flight Control Electromechanical Actuators with Special Focus on Model Architecting, Multidisciplinary Effects and Power Flows," Chinese Journal of Aeronautics, Vol. 30, No. 1, February 2017, pp. 47~65. https://doi.org/10.1016/j.cja.2016.07.006
  13. Ma, S., Liu, G., Tong, R. and Zhang, X., "New Study on the Parameter Relationships of Planetary Roller Screws," Mathematical Problems in Engineering, Vol. 2012, Article ID 340437, 2012.
  14. Ma, S., Zhang, T., Liu, G., Tong, R. and Fu, X., "Kinematics of Planetary Roller Screw Mechanism considering Helical Directions of Screw and Roller Threads," Mathematical Problems in Engineering, Vol. 2015, Article ID 459462, 2015.
  15. Qiao, G., Liu, G., Ma, S., Shi, Z. and Lim, T., "Friction Torque Modelling and Efficiency Analysis of the Preloaded Inverted Planetary Roller Screw Mechanism," ASME 2017 International Design Engineering Technical Conferences, Ohio, USA, August 2017, DETC2017-68006.
  16. Fu, X., Liu, G., Tong, R., Ma, S. and Limb, T., "A Nonlinear Six Degrees of Freedom Dynamic Model of Planetary Roller Screw Mechanism," Mechanism and Machine Theory, Vol. 119, January 2018, pp. 22~36. https://doi.org/10.1016/j.mechmachtheory.2017.08.014
  17. Lee, H. and Kang, E., "Development of Direct drive Electro-mechanical Actuation System for Thrust Vector Control of KSLV-II," Journal of the Korean Society for Aeronautical and Space Sciences (in Koream), Vol. 44, No. 10, 2016, pp. 911~920. https://doi.org/10.5139/JKSAS.2016.44.10.911
  18. Um, S., et al., "Acceptance Test of Roll Control Actuation System QM for TLV," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2019, pp. 1310~1311.
  19. Greenwood, D., Principles of Dynamics, 2nd ed. Prentice-Hall, 1987, pp. 262~279.