• Title/Summary/Keyword: Link-16 Waveform

Search Result 12, Processing Time 0.019 seconds

Performance Analysis of Link-16 Waveform considering Frequency Remapping under PBNJ (부분대역 잡음 재밍 환경에서의 주파수 재할당을 고려한 Link-16 성능 분석)

  • Lee, Kyuman;Noh, Hongjun;Lee, Jongkwan;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.955-965
    • /
    • 2013
  • The joint tactical information distribution system (JTIDS) is used as the communication terminal of Link-16 by the United States armed forces, north atlantic treaty organization (NATO), and other allied forces. A portion of Link-16 frequencies may be shortly remapped to other systems owing to the growing demand for frequencies, especially in civil aviation, which is witnessing a constant increase in air traffic. This will affect the performance of Link-16. Therefore, in this paper, we analyze the effect of frequency band reduction on the performance of Link-16 waveform under partial-band noise jamming with Nakagami fading, via simulation and numerical analysis. The multi-net and anti-jamming performance of Link-16 with frequency remapping is compared with that of conventional Link-16 systems. The results show that the performance of Link-16 waveform is degraded with the reduction in frequencies. Nonetheless, Link-16 retains its jam resistance, and it can support multiple users in the same time slots.

Anti-jamming Performance Analysis of Link-16 Waveform (Link-16 웨이브폼 항재밍 성능 분석)

  • Noh, Hong-Jun;Kim, Jung-Bin;Lim, Jae-Sung;Nam, Jeong-Ho;Jang, Dhong-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1105-1112
    • /
    • 2010
  • Link-16 is a up-to-date tactical data link used in the armed forces of U.S. and NATO. In order to guarantee the required capabilities of anti-jamming and low probability of detection, Link-16 uses the techniques of frequency hopping and spreading code etc. In this paper, under Nakagami fading channels, we ananlyze the symbol error rates (SERs) of JTIDS/Link-16-type waveform based on both the single- and double-pulse schemes by considering the partial band noise jamming and the pulse jamming models, respectively.

Group-Based Frequency Hopping Scheme for Improving Multi-Net Performance of Link-16 Waveform with Limited Frequency Band (제한된 주파수 대역에서 Link-16 웨이브폼의 멀티넷 성능 향상을 위한 그룹 기반의 주파수 도약 방식)

  • Yu, Jepung;Lee, Kyuman;Baek, Hoki;Lim, Jaesung;Kim, Jongsung;Choi, Hyogi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.110-121
    • /
    • 2016
  • Link-16 is a representative TDL operated by US air force and NATO and supports structure of Multi-net. Under Multi-net, military operation can be conducted effectively since terminal nodes in Link-16 hop over total frequency band simultaneously. As air traffic is rapidly increasing, new aeronautical system is introduced or existing system should be expanded to accommodate increasing air traffic and frequency band assigned for operating this system is scarce. It is scheduled to implement frequency remapping to solve frequency scarcity. With limited frequency band for operating Link-16, as frequency remapping is implemented, degradation of Multi-net performance can happen since multiple access interference in Link-16 is increasing so it is difficult to conduct multiple military operations. Thus, Group-based frequency hopping scheme is proposed to solve this problem. We verified the performance of the proposed scheme is improved.

Satellite Data Link Waveform and Transponder Structure for Anti-Jamming (항재밍을 위한 위성데이터링크 웨이브폼 및 중계기 구조)

  • Kim, Ki-Keun;Lee, Min-Woo;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1728-1735
    • /
    • 2011
  • In this paper, satellite data link waveform is proposed which is based on the waveform of Link-16 but LDPC code is studied instead of CCSK code in order to be optimized to satellite nonlinear channel environment and transmission characteristics. And the DSM (Demux, Selective CH switch, and Mux) transponder structure is suggested which can remove all of the jamming signal out of the transmission signal band and convert uplink hopping frequency to desired ones of downlink. The results of BER and anti-jamming performance analysis shows that the required Eb/No and processing gain in the worst case partial band jammer of the proposed waveform are 2.5dB and 52dB respectively and the anti-jamming capacity improvement of DSM transponder is maximum 2dB.

The Multi-Net Performance Evaluation of Link-16 in the L-Band Sharing with Radars (L-대역 내 레이더 주파수 공동사용 환경에서 멀티넷을 통한 Link-16 운용 가능성 성능 평가)

  • Choi, Seonjoo;Yu, Jepung;Lim, Jaesung;Baek, Hoki;Kim, Jaewon;Choi, Hyogi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.738-746
    • /
    • 2016
  • As the trend of future war has been changed to network centric warfare, tactical data link should be needed for fast and accurate situation awareness. Nowadays, Korean air force conducts military operations by using aircrafts equipped with Link-16. The Link-16 can conduct multiple mission at the same time because it supports multi-net capability. Due to lack of frequency resource, the way to share the frequency with other systems has been studied and using L band with radar is considered as one of the candidates bands. However, the data link can be affected by the interference from radars when it shares the L-band because the L-band in Korea is already assigned to long-range detection radars. In this paper, we evaluate operational possibilities of tactical data link in the L-band based on Link-16.

Tactical Data Link Message Packing Scheme for Imagery Air Operations (이미지 항공작전을 위한 전술데이터링크 메시지 패킹 기법)

  • Kim, Young-Goo;Lim, Jae-Sung;Noh, Houng-Jun;Lee, Kyu-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.278-287
    • /
    • 2012
  • In this paper, we propose an allocation scheme for variable message packings to increase efficiency of military operation using Link-16 which is well-known for tactical data link by delivering imagery information rapidly. We propose a variable message packing scheme using COC waveform to support variable data rate under some coverage limitation. Variety of message packing makes Link-16 vary transmission rate appropriately for tactical environment. We also propose a allocation scheme to assign message packing to time slot properly. Finally we verify the performance and superiority of proposed ideas by simulations.

A Level Dependent Source Concoction Multilevel Inverter Topology with a Reduced Number of Power Switches

  • Edwin Jose, S.;Titus, S.
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1316-1323
    • /
    • 2016
  • Multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to their inherent properties such as reduced harmonic distortion, lower electromagnetic interference, minimal common mode voltage, ability to synthesize medium/high voltage from low voltage sources, etc. On the other hand, they suffer from an increased number of switching devices, complex gate pulse generation, etc. This paper develops an ingenious symmetrical MLI topology, which consumes lesser component count. The proposed level dependent sources concoction multilevel inverter (LDSCMLI) is basically a multilevel dc link MLI (MLDCMLI), which first synthesizes a stepped dc link voltage using a sources concoction module and then realizes the ac waveform through a conventional H-bridge. Seven level and eleven level versions of the proposed topology are simulated in MATLAB r2010b and prototypes are constructed to validate the performance. The proposed topology requires lesser components compared to recent component reduced MLI topologies and the classical topologies. In addition, it requires fewer carrier signals and gate driver circuits.

A Novel Modulation Scheme and a DC-Link Voltage Balancing Control Strategy for T-Type H-Bridge Cascaded Multilevel Converters

  • Wang, Yue;Hu, Yaowei;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2099-2108
    • /
    • 2016
  • The cascaded multilevel converter is widely adopted to medium/high voltage and high power electronic applications due to the small harmonic components of the output voltage and the facilitation of modularity. In this paper, the operation principle of a T-type H-bridge topology is investigated in detail, and a carrier phase shifted pulse width modulation (CPS-PWM) based control method is proposed for this topology. Taking a virtual five-level waveform achieved by a unipolar double frequency CPS-PWM as the output object, PWM signals of the T-type H-bridge can be obtained by reverse derivation according to its switching modes. In addition, a control method for the T-type H-bridge based cascaded multilevel converter is introduced. Then a single-phase T-type H-bridge cascaded multilevel static var generator (SVG) prototype is built, and a repetitive controller based compound current control strategy is designed with the DC-link voltage balancing control scheme analyzed. Finally, simulation and experimental results validate the correctness and feasibility of the proposed modulation method and control strategy for T-type H-bridge based cascaded multilevel converters.

Single Phase 5-level Inverter with DC-link Switches (DC링크 스위치를 갖는 단상 5레벨 인버터)

  • Choi, Young-Tae;Sun, Ho-Dong;Park, Min-Young;Kim, Heung-Geun;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.283-292
    • /
    • 2011
  • This paper proposed a new multi-level inverter topology based on a H-bridge with two switches and two diodes connected to the DC-link. The output voltage of the proposed topology is quite closer to a sinusoidal waveform compared with a typical single phase inverter. The proposed multi-level inverter is applicable to a power conditioning system for renewable energy sources, and it can be also used as a building block of a cascaded multi-level inverter for a high voltage application. In case of conventional H-bridge type or NPC type multi-level inverter, 8 controllable switches are used to obtain a 5 level output voltage, but the proposed multi-level inverter requires only 6 controllable switches. Thus the circuit configuration is quite simple, reliable and cost-effective implementation is possible. The efficiency can be improved owing to the reduction of the switching loss. A new PWM method based on POD modulation is suggested which requires only one carrier signal. The switching sequence to make the capacitor voltage balanced is also considered. The feasibility is studied through simulation and experiment.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.