• Title/Summary/Keyword: Link recovery

Search Result 162, Processing Time 0.031 seconds

Lane Adaptive Recovery for Multiple Lane Faults in Optical Ethernet Link

  • Han, Kyeong-Eun;Kim, Sun-Me;Lee, Jonghyun
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1066-1069
    • /
    • 2014
  • We propose a lane adaptive recovery scheme for multiple lane faults in a multi-lane-based Ethernet link. In our scheme, when lane faults occur in a link, they are processed not as full link faults but as partial link faults. Our scheme provides a higher link utilization and lower packet loss rate by reusing the available lanes of the link and providing a low recovery time of under a microsecond.

Link Recovery Scheme Using Cooperative Communication for VLC System (VLC 시스템을 위한 협동 통신을 이용한 링크 복구 방식)

  • Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.357-364
    • /
    • 2012
  • In Visible Light Communication (VLC) system, with the limitation of transmission range and Field Of View (FOV), LOS (Line of Sight) link between two transceivers should be guaranteed due to the straightness of the visible-light signal. Especially for indoor applications, link recovery is an advantage method to remain the link connection because of the link failure in which caused by movement obstacle. Link recovery schemes try to keep link dynamically without re-initialing connection. This article proposes a new link recover scheme for VLC system by using cooperative communication. Our propose scheme focuses on the QoS reservation resource by GTS in IEEE 802.15.7 specification in which the requested QoS resource from client should be guarantee during the application time. With the link recovery scheme, we will try to continue the link connection as long as possible when unexpected disconnect link. The mathematical analysis and simulation results show that proposed scheme increases the overall reliability of the VLC system.

Congestion Aware Fast Link Failure Recovery of SDN Network Based on Source Routing

  • Huang, Liaoruo;Shen, Qingguo;Shao, Wenjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5200-5222
    • /
    • 2017
  • The separation of control plane and data plane in Software Defined Network (SDN) makes it flexible to control the network behavior, while also causes some inconveniences to the link failure recovery due to the delay between fail point and the controller. To avoid delay and packet loss, pre-defined backup paths are used to reroute the disrupted flows when failure occurs. However, it may introduce large overhead to build and maintain these backup paths and is hard to dynamically construct backup paths according to the network status so as to avoid congestion during rerouting process. In order to realize congestion aware fast link failure recovery, this paper proposes a novel method which installs multi backup paths for every link via source routing and per-hop-tags and spread flows into different paths at fail point to avoid congestion. We carry out experiments and simulations to evaluate the performance of the method and the results demonstrate that our method can achieve congestion aware fast link failure recovery in SDN with a very low overhead.

Adaptive Link Recovery Period Determination Algorithm for Structured Peer-to-peer Networks (구조화된 Peer-to-Peer 네트워크를 위한 적응적 링크 복구 주기 결정 알고리듬)

  • Kim, Seok-Hyun;Kim, Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.133-139
    • /
    • 2011
  • Structured P2P (peer-to-peer) networks have received much attention in research communities and the industry. The data stored in structured P2P networks can be located in a log-scale time without using central severs. The link-structure of structured P2P networks should be maintained for keeping log-scale search performance of it. When nodes join or leave structured P2P networks frequently, some links become unavailable and search performance is degraded by these links. To sustain search performance of structured P2P networks, periodic link recovery scheme is generally used. However, when the link recovery period is short or long compared with node join and leave rates, it is possible that sufficient number of links are not restored or excessive messages are used after the link-structure is restored. We propose the adaptive link recovery determination algorithm to maintain the link-structure of structured P2P networks when the rates of node joining and leaving are changed dynamically. The simulation results show that the proposed algorithm can maintain similar QoS under various node leaving rates.

Route Recovery in Content Centric Networks

  • Qamar, Arslan;Kim, Ki-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.400-401
    • /
    • 2013
  • Mobility in a network causes link disconnections and link recovery is vital for reliability of a network. A link failure affects all the preceding nodes on a damaged routing path; creates communication delay, throughput degradation, and congestion. This paper proposes link recovery mechanisms in CCN based networks. Packet overhearing is used to update neighboring nodes information. The recovery is done by forwarding node resulting in low control overhead, and better efficiency. The proposed mechanisms increase overall performance of a typical CCN and simulation results show that our proposed scheme works very well in densely populated networks with high mobility.

Enhancements of T-REFWA to Mitigate Link Error-Related Degradations in Hybrid Wired/Wireless Networks

  • Nishiyama, Hiraki;Taleb, Tarik;Nemoto, Yoshiaki;Jamalipour, Abbas;Kato, Nei
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2006
  • With the on-going wireless access technologies, the Internet has become accessible anytime anywhere. In wireless networks, link errors significantly degrade the performance of the transmission control protocol (TCP). To cope with this issue, this paper improves the recently-proposed terrestrial REFWA (T-REFWA) scheme by adding a new error recovery mechanism to its original design. In the T-REFWA scheme, senders are acknowledged with appropriate sending rates at which an efficient and fair utilization of network resources can be achieved. As the feedback values are computed independently of link errors, senders can keep transmitting data at high rates even in case of link error occurrences. Using this feature, the proposed error recovery mechanism can achieve high throughput in environments with high bit error rates. The throughput is further improved by disabling the exponential back-off algorithm of TCP so that long idle times are avoided in case of link errors. We show through simulations that the proposed method improves TCP performance in high bit error rates. Compared with several TCP variants, the proposed error recovery scheme exhibits higher link utilization and guarantees system fairness for different bit error rates.

QoS-Aware Approach for Maximizing Rerouting Traffic in IP Networks

  • Cui, Wenyan;Meng, Xiangru;Yang, Huanhuan;Kang, Qiaoyan;Zhao, Zhiyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4287-4306
    • /
    • 2016
  • Network resilience provides an effective way to overcome the problem of network failure and is crucial to Internet protocol (IP) network management. As one of the main challenges in network resilience, recovering from link failure is important to maintain the constancy of packets being transmitted. However, existing failure recovery approaches do not handle the traffic engineering problem (e.g., tuning the routing-protocol parameters to optimize the rerouting traffic flow), which may cause serious congestions. Moreover, as the lack of QoS (quality of service) restrictions may lead to invalid rerouting traffic, the QoS requirements (e.g., bandwidth and delay) should also be taken into account when recovering the failed links. In this paper, we first develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures, with which we can choose reliable backup paths (BPs). Then we construct a mathematical model for the failure recovery problem, which takes maximum rerouting traffic as the optimizing objective and the QoS requirements as the constraints. Moreover, we propose a heuristic algorithm for link failure recovery, which adopts the improved k shortest path algorithm to splice the single BP and supplies more protection resources for the links with higher priority. We also prove the correctness of the proposed algorithm. Moreover, the time and space complexity are also analyzed. Simulation results under NS2 show that the proposed algorithm improves the link failure recovery rate and increases the QoS satisfaction rate significantly.

Output Control of Wind Farm Side Converter from DC Link for DC Voltage Stabilization with HVDC (해상풍력 연계용 HVDC의 DC전압 안정화를 위한 DC Link의 발전기측 컨버터 제어 전략)

  • Lee, Hyeong-Jin;Kang, Byoung-Wook;Huh, Jae-Sun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1479-1485
    • /
    • 2016
  • This paper presents DC voltage recovery time improvement method in DC link of High Voltage Direct Current (HVDC) with offshore wind farm. The wind farm should be satisfied Low Voltage Ride Through(LVRT) control strategy when grid faults occur. The LVRT control strategy indicates actions which have to be executed according to the voltage dip ratio and the fault duration. However, The LVRT control strategy makes between wind farm and power system through DC Link voltage when grid fault occurs. The de-loading scheme is one of the method to control the DC voltage. But de-loading scheme need to long DC voltage recovery time. Thus, this paper proposes an improved de-loading scheme and we analysis DC voltage and active power reference through a simulation.

The Cost Analysis of Network by The Function of Automatic Link Recovery (자동링크복구 기능에 따른 네트워크 비용분석)

  • Song, Myeong-Kyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.439-444
    • /
    • 2015
  • The Social infrastructure systems such as communication, transportation, power and water supply systems are now facing various types of threats including component failures, security attacks and natural disasters, etc. Whenever such undesirable events occur, it is crucial to recover the system as quickly as possible because the downtime of social infrastructure causes catastrophic consequences in the society. Especially when there is a network link-failure, we need an automatic link-recovery method. This means that customers are aware of network failures that can be recovered before you say that service. In this paper, we analysis the relation between Auto-recovery performance and cost.

A Digital Carrier Recovery Scheme for Satellite Transponder (디지털방식의 위성 트랜스폰더 반송파 복원 방안 연구)

  • Lee, Yoon-Jong;Choi, Seung-Woon;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.807-813
    • /
    • 2009
  • A Satellite transponder is the Communication system to process signal with up-link signal recovery, and transmit to ground station through down-link. The orbit flight in the deep space causes high doppler shift in the received signals from the ground station so that the Carrier recovery and fast synchronization system are essential for the transponder system. The conventional analog transponder is employing the system's carrier recovery along with the PLL (Phase Locked Loop) designed for satellite's operation. This paper presents a digital carrier recovery scheme which can provide more reliable and software reconfigurable implementation technique for satellite transponder system without verifying scheme along with transponder designed for short distance or deep space satellite.