
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, Nov. 2017 5200
Copyright ⓒ2017 KSII

Congestion Aware Fast Link Failure
Recovery of SDN Network Based on Source

Routing

Liaoruo Huang1, Qingguo Shen1 and Wenjuan Shao1,2
1 College of Communications Engineering, PLA University of Science and Technology

Nanjing, Jiangsu 210007 - China
[e-mail: huangliaoruo@sina.com, shenqg2016@163.com]

2 Zijin College, Nanjing University of Science and Technology
Nanjing, Jiangsu 210094 - China
[e-mail: shaowj_nj@139.com]

*Corresponding author: Qingguo Shen

Received May 19, 2016; revised September 30, 2016; accepted July 17, 2017;
published November 30, 2017

Abstract

The separation of control plane and data plane in Software Defined Network (SDN) makes it
flexible to control the network behavior, while also causes some inconveniences to the link
failure recovery due to the delay between fail point and the controller. To avoid delay and
packet loss, pre-defined backup paths are used to reroute the disrupted flows when failure
occurs. However, it may introduce large overhead to build and maintain these backup paths
and is hard to dynamically construct backup paths according to the network status so as to
avoid congestion during rerouting process. In order to realize congestion aware fast link
failure recovery, this paper proposes a novel method which installs multi backup paths for
every link via source routing and per-hop-tags and spread flows into different paths at fail
point to avoid congestion. We carry out experiments and simulations to evaluate the
performance of the method and the results demonstrate that our method can achieve
congestion aware fast link failure recovery in SDN with a very low overhead.

Keywords: Software-Defined Network; link failure recovery; link protection; source
routing;

This work was financially supported by the Natural Science Foundation of China (61271254).

https://doi.org/10.3837/tiis.2017.11.002 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5201

1. Introduction

The separation of data plane and control plane in Software Defined Network (SDN)
provides programming capabilities for network and flow transmission, bringing convenience
to the network virtualization, load balancing, QoS and other applications. However, this
separation also makes it difficult to perform fast link failure recovery in SDN, because the
network depends on the remote controller to handle the failure, which may introduce large
delay, therefore cause serious packet loss and interruption of network service.

In order to satisfy the requirement of recovery time in carrier grade network, several
proactive mechanisms have been put forward to realize approximate zero loss and fast link
failure recovery in SDN[1]~[5]. In proactive mechanisms, end-to-end or per-hop preplanned
backup paths are used to guarantee that when link failure occurs, the switch adjacent to the fail
point can reroute the flow immediately through the backup paths to the destination without the
controller’s decision. Through experiments, it is shown that they can achieve much shorter
recovery time than the traditional methods. However, there are still some concerns about the
proactive mechanism: First, it may need large quantities of flow entries to build backup paths
and complex mechanism to keep them active; second, the preplanned backup paths once
constructed, are inconvenient to be modified, deleted and rebuilt, so it is hard to adaptively
adjust backup paths according to network status and therefore may cause congestion when
rerouting the interrupted flows.
 In summary, there are three objectives that failure recovery method has to achieve: (1)Fast:
for the requirements of critical tasks in carrier grade network, it has to be as fast as possible to
detect and locate the failure point and react to the link failure. And the total failure recovery
time should be less than 50ms[6]; (2) Low overhead: the flow entries that backup paths
consume should be as few as possible so that the network can accept more flows; (3)
Congestion aware: the backup path planning and flow rerouting process should put the
network status into consideration, so as to avoid congestion of other parts of network.

There has been a lot of works concentrating on the objective (1) and (2)[1]~[7], but few
works notice the congestion problem during rerouting process. In the traditional way, it has to
reserve bandwidth for the protected flows on the backup paths to avoid packet loss and service
degradation caused by congestion[8]. However, this method may lead to waste of network
resource and is complex to deploy in practice. In order to achieve the three objectives above,
this paper proposes a congestion aware fast link failure recovery method of SDN. The method
uses source routing to control flow’s route at the edge of the network. According to the
predefined multi backup paths for every link and the bandwidth demand of every flow, the
controller inserts per-hop backup path tag to the source routing header of the packet to identify
the specific backup path for the flow at every hop. With this mechanism, the interrupted flows
are transmitted through multiple backup paths during rerouting process so that the congestion
can be avoided. When failure occurs, the switch adjacent to the fail point updates the source
routing header of the packet according to the backup path tag, then the packet can bypass the
fail point. This method takes advantages of topology independent feature of source routing and
decouples the backup path planning and backup path selection. Therefore, it can realize
dynamically flow assignment among backup paths according to the network status.

Compared with the traditional methods, our method mainly has four advantages: First, it
can perform local link failure recovery without involvement of the controller so that it can
minimize the recovery time. Second, it can achieve rather low flow entry consumption

5202 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

because it stores route information in the packet header rather than flow entries installed in the
switch. Third, it considers the congestion problem during rerouting process which is ignored
by most of the traditional methods, and can significantly reduce the possibility of congestion.
Fourth, it can be applied to handle both single link failure and single node failure. The main
contributions of this paper are following: (1) We propose a novel architecture and
implementation of SDN based on source routing; (2) We propose a congestion aware fast link
failure recovery method based on source routing SDN; (3) We give the formalization and
solution to the backup path planning and selection problems; (4) We analyze the overhead and
evaluate the performance of this method.

The remainder of this paper is organized as follows: Section 2 gives some relate works of
SDN link failure recovery; Section 3 introduces the architecture of the proposed method.
Section 4 gives formalization and solution to the backup path planning and selection
problems; Section 5 gives the implementation of proposed method; Section 6 carries out
evaluation and simulations of the proposed method; Section 7 gives the conclusion.

2. Related Work

2.1 Link Failure Detection
The link failure recovery time is consisted of two parts: failure detection time and reaction

time. In order to realize fast link failure recovery, it is important to detect and locate the failure
immediately after the failure happens. Loss of Signal (LOS) and Bidirectional Forwarding
Detection (BFD)[9] are widely used to detect link failures. However, the time of failure
detection using LOS may be hundreds of milliseconds which can’t meet the requirement of
carrier grade network. BFD uses a simple “hello-echo” protocol between two end terminals of
a path and the time consumption is below 50ms[10]. But, BFD is unable to locate the failure
link in the path so that it can be only used to detect failure of a path rather than a specific link.
To solve this problem, authors of [11] propose a per-link BFD mechanism which applies the
BFD between the terminals of a link rather than a path. Through experiment, it can complete
failure detection within 10ms.

Besides, in [12] and [13], an path monitoring and failure location mechanism is proposed.
With a monitoring cycle covering all links in a given network, the Link Status Monitoring
(LSM) packet is used to supervise the path alive status. The switches which have receive LSM
packet send the Failure Location Identification (FLI) packets to the controller. So when there
is a link failure, the failure node can be precisely located according to the FLI packets.
Moreover, authors of [14] put forward a link failure detection mechanism which is applied to
detect the failure of control channel between switches and the controller using the information
sharing mechanism between multiple controllers.

With the efficient and fast detection methods above, our failure recovery method can be
realized and the focus of our paper is how to minimize the reaction time after failure detection.

2.2 Reactive Link Failure Recovery
There are two mechanisms to handle the link failure: reactive and proactive. The typical

reactive method is fast path restoration proposed in [15], [16] and [17]. With this method, the
switch informs the controller of topology change event. Then the controller computes and
installs the new path for the interrupted flows. The time consumption of this process may be
large, therefore it may cause packet loss and service interruption. Besides, authors of [15] also
propose an improved version of fast path restoration called “predetermined restoration”.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5203

Different from fast restoration, the backup paths are preplanned with priorities and the
controller can pick a proper backup path for the disrupted flows.

The reactive methods mainly have two disadvantages: First, due to the involvement of the
remote controller, the time consumption of the link failure recovery can’t meet the demand of
carrier grade network, which is demonstrated through experiments in [10] and [18]; Second,
computing and installing paths for interrupted flows may introduce heavy burden to the
controller, and therefore degrade the performance of the entire network.

2.3 Proactive Link Failure Recovery
To overcome the disadvantages of reactive methods, proactive methods use static

preplanned backup paths to reroute the interrupted flows without involvement of the controller.
And the key of the proactive methods is a handover mechanism which can disable the flow
entries of old paths and then automatically put the backup path’s flow entries into use. In
Openflow-enabled switches, there is no such mechanism but entry expiry timer as “idle time
out” and “hard time out”. So in order to realize fast proactive link failure, [1] proposes a
method called “Auto-Reject” which can detect the link failure and disable the flow entries. In
[19], authors put forward a flow entry expiry mechanism to automatically delete the entries of
old path when link failure occurs. In [2], authors use Openstate to monitor the packet and
switch ports state, and reallocate flow to new path when switch port is down. However, the
mechanisms mentioned above need additional modification to the switch and are hard to be
applied in practice. The Openflow v1.5 provides a fast failover mechanism called failover
group table through instantiating multi action lists for the same flow entry and applying them
according to the link status[20]. It doesn’t need any modification to the Openflow protocol and
can achieve automatically handover according to the alive status of action lists.

Based on these handover mechanisms above, several proactive methods have been put
forward. In order to minimize the failure recovery time, the authors of [1] propose an
improvement of link protection called segment protection. In this scheme, backup paths are
planned on every hop instead of end-to-end, so that flow can be rerouted at local switch
adjacent to the fail link and achieve shorter failure recovery time. However, segment
protection needs large quantities of flow entries to build backup paths and complex
mechanism to keep them active.
 For the purpose of reducing the number of flow entries to build backup paths in segment
protection, authors of [3] put forward a novel design called Independent Transient Plane (ITP)
which consists of links that can be shared by different backup paths to reroute flows so that the
number of flow entries is reduced. Besides, authors of [7] apply Loop-Free Alternates[21] to
the Openflow-based network. With additional loop detection mechanism, it can achieve
maximum protection coverage with a very low overhead. However, there are still two
concerns about these methods: first, the consumption of flow entry is still large and need to be
further optimized; second, the backup path planning process hasn’t put link status into
consideration so that it may cause congestion during rerouting process.

To solve the congestion problem, [13] proposes a backup path optimization method which
put the link utilization into consideration. Optimization model is put forward and evaluated.
Although using the optimized backup paths can reduce the possibility of congestion, but it is
still not efficient enough because static paths can’t be adaptively adjusted according to the
network status.

In [2], authors propose a Multi Path Rerouting (MPR) method based on Openstate. This
method improves the segment protection with planning multi-backup paths for every link and
distributing flows into backup paths to solve the congestion problem. With an optimization

5204 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

model, this method can significantly reduce the possibility of congestion, but the backup paths
are still static planned and need too many flow entries.
 A source routing based method called SlickFlow is proposed in [4]. It encodes all the
backup paths into the packet header. When link failure occurs, switch looks up the backup path
and reroutes the packet. Obviously, this method introduces too much overhead to the packet
header and uses static backup paths as well.

In [22] and [23], the congestion aware fast link failure recovery method in IP and Openflow
hybrid network is researched. Multi backup paths are pre-planned and installed in the
Openflow switch. The IP switches forward interrupted packets directly to the Openflow
switch when failure happens. Then Openflow switch picks a proper backup path to reroute the
packet. Although this method can handle the congestion problem well, but it is efficient in IP
network rather than SDN.

In summary, there is no method that can fulfill the three requirements mentioned in Section
1 at the same time for now, and the main reason of that is the tight coupling of flow and the
path flow transmits in SDN. In our method, we use source routing to separate the flow and its
path so that it can achieve congestion aware fast link failure with a very low overhead.

3. The Proposed Solution for Fast Link Failure Recovery

3.1 Packet Header Encoding
Recent years, source routing SDN has attracted some attention as it can reduce the number

of entries used in SDN without losing the programmability of flows at the same
time[24][25][26]. However, source routing is not yet supported in the latest Openflow. So in
this paper we modify the VLAN tag of 802.1q to realize source routing. The vlan_id field and
vlan_user_priority field are used to encode route information.
 Different from traditional source routing, the next hop information has two parts in our
method: output port ID and backup path tag. The output port ID is encoded in vlan_id(VID)
field while backup path tag is encoded in vlan_user_priority(VUP) field as Fig. 1 shows:

Tag Protocol ID: 0x8100
2Bytes

User Priority
3bit

CFI
1bit

VLAN ID
12bit

Used as backup path tag Used as next-hop information

VLAN Tag VLAN Tag VLAN Tag……

Source Routing Header
Fig. 1. Packet Header Encoding

The length of VID field in VLAN tag of 802.1q is 12bit so that it can support 212

 of next
hops at most. And 8 backup paths can be supported at most as VUP field is 3bit long. The
switch can transmit the packet along the working path through matching the VID field when
network is normal, and steer the packet to backup path through matching the VUP field when
link failure occurs.

In addition, the length of the VLAN tag and source routing header may introduce overhead
to the packet and therefore limit the scalability of the source routing SDN. However, the length
of packet header can be further optimized as there are only a few bits being used in VLAN tag.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5205

We believe that with the arbitrary matching ability provided by Openflow, source routing
mechanism with shorter length of packet header can be developed in the near future.

3.2 Source Routing SDN
Source Routing SDN (SR-SDN) mainly has three functions: packet header programming,

packet forwarding and packet steering. In order to realize fast failure recovery, we leverage the
fast failover group table of Openflow, which can perform different action list according to the
specific situation.

(1) Packet header programming

Packet header programming assembles the packet’s source routing header with VLAN tags
introduced in 3.1 according to the flow entries and action-list preinstalled by the controller as
Fig. 2 shows:

Execute
Action_List_1:
Push Vlan Tag1;
Push Vlan Tag2;
……
Push Vlan Tagn;
Goto FE_ID2;

Ingress
Processing

Egress
Processing

SrcAdd&&DesAdd High Action_List_1

Match field Priority Instruction

FE_ID1

Flow entry ID

match
Packet in

Packet out

Vlan_id High Goto Group_ID1
Match field Priority Instruction

FE_ID2
Flow entry ID

Flow Table 0 Flow Table
1

Output Port1

Instruction

Group_ID1

Flow Group ID

Failover Group Table

Fast Failover

Group Type

Packet Header Programming

Fig. 2. Packet header programming

With the Push_vlan_tag action provided by Openflow, switch can nest several VLAN tags
to the header of the packet so that the route information is formed.

(2) Packet forwarding

Packet forwarding process forwards the packet according to the next hop information
formed by packet header programming process as Fig. 3 shows:

Vlan_id==id1 High Goto Group_ID1
Vlan_id==id2 High Goto Group_ID2

Match field Priority Instruction

…… …… ……

FE_ID1
FE_ID2

Flow entry ID

……

Vlan_id==idn High Goto Group_IDnFE_IDn

match
Packet in

Packet out

Execute Action_List_2

Instruction

Group_ID2

Flow Group ID

Fast Failover

Group Type

Execute Action_List_2:
Pop the outer most Vlan Tag
Output Port_2

Flow Table 0 Failover Group Table

Packet Forwarding
Fig. 3. Packet forwarding

Through matching the VID field, switch finds the proper port to output the packet and

deletes the outer most VLAN tag in packet’s header with Pop_Vlan_Tag action provided by
Openflow.

(3) Packet Steering

Packet steering steers the packet to a new path through updating the source routing header
as Fig. 4 shows:

5206 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

Fig.4 Packet steering process

 When link failure occurs, the alive status of the primary action list in failover group table is
changed to DOWN. Then the packet is processed by the secondary action list which updates
the packet’s source routing header through popping and pushing VLAN tags according to the
backup path tag and the destination IP address. After updating process, the packet is checked
again and output according to the new source routing header.

3.3 Procedures of the Method
The congestion aware fast link failure recovery method proposed in this paper contains 3

procedures: backup path planning, backup path selection, fast link failure recovery. The
former two procedures are conducted in the controller and edge switches, and the last
procedure is conducted in the core switches only when link failure occurs.

In the backup path planning process, according to the network status, the controller finds the
optimal backup path set which can provide sufficient available bandwidth with minimal hops.
Besides, the number of the backup paths for every link should be restricted to reduce the
complexity of backup path planning algorithm and flow entry consumption for path
construction. Then the controller tags every backup path and installs corresponding flow
tables to the switches. The planning process is shown in Fig. 5:

Fig. .5 The backup path planning process

In the backup paths selection process, according to the bandwidth demands of flows, the

controller allocates every flow to a proper backup path at every hop and inserts the tag of
selected backup path into the per hop information of packet header. The selection process is
shown in Fig. 6:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5207

Fig. 6. The backup paths selection process

The fast link failure is performed only when link failure occurs. In fast link failure revocery

process, the packets interrupted are processed by the fast failover group table, which can steer
the packet to the proper backup path according to the backup path tag in the packet header and
destination IP address. The failure recovery process is shown in Fig. 7 as follows:

Fig. 7. The fast failure recovery process

3.4 Example
Consider the topology as Fig. 8, there are two working flows from S to T, which marked as

flow1 and flow2. The transmit rate of flow1 is 50Mbps, and flow2 is 30Mbps. The working
path is S→D→T. Every port of switch is identified by port id as Fig. 8 shows, then we can
demonstrate our fast failure recovery method as following steps:

Fig. 8. Topology of network

5208 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

Step1: Backup path planning. There are two links have to be protected: S→D and D→T. We
presume two backup paths for each link are used. Then the controller performs the backup
paths planning algorithm for links S→D and D→T according to the network status. We
assume that after backup paths planning process, two backup paths S→A→B→C→T and
S→E→F→G→T are chosen for S→D, and are tagged by psd,1 and psd,2 separately. Similarly,
The paths D→B→C→T and D→F→G→T are chosen for D→T and are tagged by pdt,1 and
pdt,2. Then the controller installs flow entries on switch S and D, which match packet’s VUP
field and update the packet header.
 Step2: Backup path selection. The available bandwidths of backup paths psd,1 and psd,2 at
switch S are assumed to be 70Mbps and 60Mbps. After the backup paths selection process, we
assume that the controller assigns flow1 to path psd,1 and flow2 to path psd,2 at switch S
according to the available bandwidth of backup paths and the demands of flows. Then the first
hop information of flow1 is organized as “1psd,1”. The “1” represents the output port ID and the
“psd,1” represents the backup path id. In addition, if the backup path tag is X, then there is no
backup path for the flow. After the same processes in switch D, we assume that the packet
header of flow1 is “1psd,11pdt,1” and that of flow2 is “1psd,21pdt,2”.
 Step3: Fast link failure recovery. We assume link D→T is failed at sometime and then fast
recovery process starts. We take flow1 as example. At switch S, it checks the outer most
VLAN tag which is “1psd,1”. After matching process, switch deletes the tag “1psd,1” and the
packet header changes from “1psd,11pdt,1” to “1pdt,1”. Then switch S outputs the packet through
port1 as there is no link failure at link S→D. At switch D, the packet’s header is “1pdt,1” and
port1 is failed. Then switch D checks the backup path ID which is pdt,1. According to the flow
entries installed in step1, switch D pops the VLAN tag “1pdt,1” and pushes VLAN tags “0X”,
“1X”, “3X” , which represent the backup path 1: D→B→C→T at switch D. Then the packet is
checked again and output through port3. The same actions are also performed on flow2 so that
the interrupted flows can bypass the failed link.

4. Backup Path Planning and Selection

4.1 Backup Path Planning
The network can be presented by a bidirectional graph G(V,E), V is the set of nodes in graph

G and E is the set of links in graph G. Let’s define the following parameters:

Dsd The set of paths from source s to destination d;
B The set of backup paths which are selected;
F The set of flows need to reroute;
eij

p Indication function which is equal to 1 if link (i,j) belongs to path p, and 0 otherwise;
tp

B Indication function which is equal to 1 if path p is selected to B, and 0 otherwise;
cp The available bandwidth of path p;
(k,o) The failed link (k,o);
fi The flow i;
c(fi) The bandwidth demand of flow fi;
ri

j,h Indication function which is equal to 1 if flow fi is assigned to path j at hop h, and 0
otherwise;

dp,h The total bandwidth demand of flows assigned to path p at hop h;
pv The number of ports of switch v;
Nump The upper bound of the number of backup paths for every link;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5209

 In backup path planning process, we have to find a set of backup paths which can meet the
following requirements: (1) Any one of the backup path should not contain the failure node
and be loop free;(2) The backup paths should be link disjoint; (3)The number of backup paths
for every link should be no more than the upper bound Nump; (4)The backup paths should
provide as much available bandwidth as possible; (5) The backup paths should be as short as
possible. So we can formalize the problem to a multi objective optimization problem as (1)
shows:
 min[,], (,) ,

sd sd

p B B
ij p p p sd

p D ij E p D
V e t t c i j E p D

∈ ∈ ∈

= − ∀ ∈ ∀ ∈∑ ∑ ∑ （1）

In practice, available bandwidth that needs to reroute flows should have a lower bound. So
we introduce parameter γ(γ≥1), and define the lower bound as ()i

i
c fγ ∑ . Then the problem is

transformed to K-shortest disjoint paths with bandwidth guarantee (K-SDPBG). So we can
have the multi constrained 0-1 integer linear programming model as follows:

min p B
ij p

p ij
e t∑∑

. () B
p p i sd

p i
s t t c c f p Dγ≥ , ∀ ∈∑ ∑ （2）

 p
ko sd

p
e p D = 0, ∀ ∈∑ （3）

(,)
1, , (,)p

ij sd
i j

e p D i j E≤ ∀ ∈ ∀ ∈∑ （4）

 2, , , (,)p
ij sd

i
e i N p D i j E≤ ∀ ∈ ∀ ∈ ∀ ∈∑ （5）

 1, , , (,)p
ij sd

p
e i N p D i j E≤ ∀ ∈ ∀ ∈ ∀ ∈∑ （6）

 , , (,)B
p p

p
t Num i N i j E≤ ∀ ∈ ∀ ∈∑ （7）

The formula (2) guarantees that the available bandwidth provided by backup paths is more
than the lower bound. The formula (3) guarantees that any of the backup paths doesn’t contain
the failure link. The loop free of backup paths is obtained by formula (4) and (5). And formula
(6) represents that all the paths are link disjoint. The upper bound of backup paths number is
defined in formula (7). And Nump should be determined by in-degree of destination node,
minimal out-degree of nodes in working path and the bit length of backup path tag, which can
be presented as (8):
 min{min{ }, , 2 }out in n

p i dNum p p= （8）

This problem is NP hard and we propose a heuristic algorithm consisted of two procedures
to solve the problem. First, we modify the Dijkstra algorithm to find the k disjoint shortest
paths from s to d as Procedure1 shows. In Procedure1, we find the shortest path p from s to d as
normal Dijkstra algorithm in every loop, which is showed in line 1~21. Then we delete the
links contained in path p to guarantee that all paths selected are link disjointed as line 22 shows.
Until there is no path can be found from s to d in G, the Procedure1 stops.

5210 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

Procedure 1 ModifiedDijkstra(graph, start, destin)
1: do
2: for i = 0 to number of nodes do
3: pathList.add(start)
4: pathList.add(i)
5: pathListMap.put(i,pathList)
6: end for
7: for bridge = 0 to number of nodes do
8: for next = 0 to number of nodes do
9: if startTo(bridge)+getLength(bridge,next)<startTo(next) then
10: path = pathListMap.get(next)
11: bridgePath = pathListMap.get(bridge)
12: path.clear()
13: path.addAll(bridgePath)
14: path.add(next)
15: end if
16: end for
17: end for
18: flag = startTo(destin)
19: if flag!=INF then
20: pathSet.add(pathListMap.get(destin))
21: end if
22: UpdateGraph(graph, pathListMap.get(destin))
23: end do
24: while flag!=INF
25: end while

Second, we have to select n backup paths from the path set formed in Procedure1. The paths
selected should have minimal hops in total and can provide sufficient available bandwidth. To
solve the problem, we design a dynamical programming algorithm as Procedure2 shows.
Backtracking is used to solve this problem and the state transmission formula can be presented
as f[i][a][b] = min{f[i-1][a][b],f[i-1][a-a[i]][b-b[i]]}, which is shown in line 10~16.

Procedure2 BackupPathSet (i, bandW, num)
1: if i==0
2: if bandwidth[0]>bandW && num>0
3: return length[0]
4: end if
5: else return INF;
6: end else
7: end if
8: else
9: int temp=INF
10: if number>0
11: if(BackupPathSet(i-1,bandW-bandwidth[i],num-1) ==0)
12: temp = BackupPathSet(i-1,bandW,num)
13: end if

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5211

14: else temp=Minimum(BackupPathSet(i-1,bandW-bandwidth[i],num-1),
BackupPathSet(i-1,bandW,num))

15: end else
16: end if
17: return temp
18: end else

In practice, it is not necessary to run backup path planning process frequently because that

with the change of network status, the backup paths may not be the optimal but can still satisfy
the demand of flows. Therefore, we set a threshold () (1)i

i
c fτ τ ≥∑ to trigger the backup

path planning process. When
p

()B
p p i

i
t c c ft<∑ ∑ stands, the controller restarts the process

to find more optimal backup paths.

4.2 Backup Path Selection
For the congestion avoidance during the flow rerouting, we have to distribute flows into

different backup paths according to the demands of flows and the available bandwidth every
path has. First, we define an assignment of path k at hop h as P(k) shown in (9):

, , ,
0 1() { , , , }k h k h k h

h nP k r r r=  （9）
And we define the cost function of P(k) as follows:

0

()
(())

()

k

k

p
k h n

k
p i i

h
g P k

c r c f

α

=
− ∑

 （10）

The α is the adjustment parameter and
kph is the length of path pk. When α is large, the flow

tends to select a shorter path, otherwise, the flow tends to select a path with more available
bandwidth. Then we can have the mathematical model as follows:

max min{ (())}kg P k

,
,. . () , , p h

p h i i i
i

s t d r c f f F p B= ∀ ∈ ∀ ∈∑ （11）

,()= , , i p h i
i p

c f d f F p B∀ ∈ ∀ ∈∑ ∑ （12）

, 1 , p h
i

i
r p B= ∀ ∈∑ （13）

, () , ,p h
p i i i

i
c r c f p B f F> ∀ ∈ ∀ ∈∑ （14）

Formula (11) and (12) guarantee the flow consistence. Formula (13) makes sure that a flow
can be assigned into at most one path. Formula (14) represents that the bandwidth
requirements of flows assigned to a path should not more than the bandwidth available. It is
easy to prove that this problem has the property of optimal substructure. So we can use greedy
algorithm to solve this problem as Procedure3 shows. In every loop, we find flow with
maximal rate and path with minimal value of cost, and then assign the flow to the path. When
there is no flow that is not assigned, algorithm stops.

5212 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

Procedure3 FlowAlocate(FlowRate,policy,path)
1: while set.size() != FlowRate.length()
2: int max = findMaxFlowRate(FlowRate)
3: int min = findMinCostFunction(path)
4: List<Integer> assignment = policy.get(min)
5: assignment.add(max)
6: policy.put(min, assignment)
7: set.add(max)
8: end while

5. Implementation
We build our method on an online test bed supported by SDNLAB[27] to verify the

effectiveness of our method. The experimental network shown in Fig. 9 is consisted of a
software controller installed in Ubuntu-14.04 and five software openflow-enabled switches.
The controller used is OpendayLight Desktop Litmus and the switch used is Open vSwtich
2.3.0. We realize the source routing SDN and carry out experiments on failure recovery time.

Fig. 9. Experimental network topology

For the sake of demonstration, we compare our method with segment protection which

performs local failure recovery and has the minimal recovery time. In the segment protection,
the recovery time consists of two parts as [28] demonstrates:

 （15）

The Tdetection is the failure detection time using per-link-BFD introduced in [11] which can
realize failure detection time below 10ms in our schema. Thandover,f is the time to activate the
backup path of flow f in switch.

In the method we propose, the recovery time can be presented as (16):
 （16）

The Tupdate,f is the time to activate the backup path and modify the source routing header of
packet. The Tupdate,f may be larger than the Thandover,f as the former has to perform additional
actions to modify the packet header. However, in the open vSwtich we carry out evaluation,
the difference is very small even the packet number is very large and the time of a switch to
modify the alive-status of a group table is less than 1ms. Then we evaluate the failure recovery
time under different conditions and the result is shown in Fig. 10.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5213

(a) Failure recovery time on different link ID (b) Failure recovery time on number of

 disrupted flows
Fig. 10. Failure recovery time result

From formula (15) and (16), it can be seen that the failure recovery time of segment

protection and SR-SDN is independent of network scale. Furthermore, the Fig. 10(a)
demonstrates that the failure recovery time of both methods has no relation with the location of
the failure point. In Fig. 10(b), as the number of flows increases, the recovery time increases in
segment protection method because there are more group table need to modify. However, the
increasement is so slow that it still can achieve failure recovery within 50ms even dealing with
large quantities of group tables. At the same time, the recovery time of SR-SDN is almost
static and independent of the number of interrupted flows, as the number of group tables need
to modify is static. So we can conclude that the method proposed in this paper can realize
minimal and nearly static failure recovery time as segment protection and other methods
which perform local link failure recovery.

Additionally, the sampling interval and the delay between switch and controller may
influence the performance of our backup path planning and selection algorithms which make
decision depending on the real time network status. To solve this problem, we average the
network status information gathered from switches as formula (17) shows:

1 (1)n n nAvg wAvg w C−= + − （17）

 The 1nAvg − is the average value after (n-1)th computation. Cn is the nth sampling value of
network status and w is the weigth value. With the processing of formula (17), the controller
makes decision according to the trend of available bandwidth of the backup paths rather than
the accurate value so that the mistakes caused by delay can be reduced. However, how to get
the accurate value of w is remained to be researched and w=0.6 is recommended through
several experiments.

6. Evaluation
In this section we derive analysis and simulations to evaluate the overhead and performance

of the method this paper proposes.

6.1 Overhead Analysis
(1) Flow Entries Needed to Build Backup Paths

TCAM, which is used to store flow entries, is the most valuable resource of the switch. In
traditional link protection methods, the TCAM may be exhausted rapidly because they need

5214 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

too many entries to build backup paths for large quantities of flows.
Segment protection is a typical link protection method which has been widely used and ITP

method introduced in [3] can significantly reduce the flow entry consumption. So in this
section, we evaluate the flow entry consumption of our method and compare our method with
segment protection and the ITP method. Consider a n*n matrix network like Fig. 11 shows.
The source node and the destination node can form a i*j submatrix topology and we presume
that the working path is always the border of the submatrix as dashed line shown in Fig. 11.

D

S





















1 2 3

n+1 n+2

n

2n

2n+2 2n+3 3n

n2-n+1 n2-n+2 n2-n+3 n2
Fig. 11. n*n matrix network

It has been demonstrated in [1] and [3] that the total flow entries of segment protection can

be presented as (18):

_ , , ,
2 1

()
n i

segment protection i j n i j
i j

F N M
= =

= ×∑∑ （18）

And Ni,j , Mn,i,j can be expressed by (19) and (20) according to [3]:

,

2 4 4; 3

4 4 8; 3i j

j i j
N

i j j
+ − <

=  + − ≥
 （19）

, , , ,

8, 1,
(1) (1) ;

4, 1 n i j i j i j

if j i j
M n i n j

if i or i j
σ σ

≠ ≠
= − + × − + × =  = =

 （20）

In independent transient plane (ITP) method, the total number of flow entries can be
presented as (21)~(23):

_ _ITP working path transient planeF F F= + （21）
2 2

_ [2 2]transient planeF n n n= × + − （22）

_ , ,
2 1

[(1)]
n i

working path n i j
i j

F i j M
= =

= + − ×∑∑ （23）

In our method, the total flow entries can be expressed as (24):
_ _ SR SDN working path transient planeF F F− = + （24）

In the source routing schema, flow entries that find right port to output packet can be shared
by all working paths. So the flow entries needed to build working paths can be presented as
(25):

2
_ 2 working pathF n p= × （25）

p is the number of ports in every switch and 2p is the sum of matching flow entries and fast
failover flow tables. We construct one backup path for every link and it needs one flow entry to
update the packet’s header at every hop. So the flow entries to build backup paths can be
presented as (26):

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5215

_ , ,
2 1

[(1)]
n i

backup path n i j
i j

F i j M
= =

= + − ×∑∑ （26）

The total flow entries of three methods are shown in Fig. 12(a).
It can be seen that our method has the minimal flow entry consumption among three

methods and the advantage is expanding with the increasment of network scale. And the
improvement of ITP and SR-SDN compared with segment protection is shown in Fig. 12(b).
It can be demonstrated that our method can realize less flow entry overhead compared to ITP.

(a) Total number of flow entries (b) Improvement compare to segment protection

Fig. 12. The analysis of flow entries

(2) The Complexity Of Algorithms
The complexity of Dijkstra algorithm in Procedure1 is O(n2) and can be optimized to

O(ElogV). E is the number of links in graph G and V is the number of vertexes. K is the number
of backup paths at every hop and N is the length of working path. In the worst case, the
complexity of Procedure1 is O((E2+E)/2*logV). And the complexity of procedure2 is
O(E!/(K!(E-K)!)). So the complexity of backup paths planning algorithm is presented as (27):

2() !() (log)

2 !()!
E E N NEO Procedure1+ Procedure2 O V

K E K
+

= +
−

 （27）

The complexity of Procedure3 can be presented as (28), and M is the number of flows to

reroute:
(2 1)()

2
NM M KO(Procedure3) O + +

= （28）

Several symmetrical and unsymmetrical topologies are used as test platforms to evaluate the

time consumption of backup path planning algorithms in real network, such as grid network,
FatTree, any-to-any network, NSFNet and etc as Fig.13 shows. Because the execution of the
backup path planning algorithm is independt at every hop, so we test the algorithm only at one
node for the sake of simplicity. We realize algorithms with Java and carry out experiments at
PC which runs Ubuntu-14.04 with a CPU of Core i5-4210m 2.6Hz and 4GB RAM. The links
in every topology are bidirectional and the available bandwidth is randomly distributed in
(0,100). There are 10 flows and the rates of which are randomly distributed in (0,10). The
experiment is repeated 50 times and the result is averaged.

5216 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

D

S





















1 2 3

n+1 n+2

n

2n

2n+2 2n+3 3n

n2-n+1 n2-n+2 n2-n+3 n2
n-1

2nn+2

1 2

2n-1

n
2 / 2n k= 2(/ 2)m k=





n+1

2n+1 2n+2 2n+m-1 2n+m

1

2

3 4

n





 (a) n*n grid network (b) FatTree network (c) Any to any network

n+1 n+2 n+m

1 2 3 4 5 n





0 1

2 3

8

4 5
6

7

10
9

11

13

12

11
0

1 3

2 4

5
8

6
7 9

10

 (d) m*n leaf-spine network (e) Polska (f) NSFNet

Fig. 13. Test topologies

To evaluate the efficiency of algorithm, we define the optimal ratio as follows:

p B
ij p

p ij
p B

ij p
p ij

e t of optimal solution
Optimal Ratio

e t of our algorithm
=

∑∑
∑∑

 (28)

Then we evaluate the optimal ratio and the time consumptions of our algorithms. The test
result is demonstrated in Table 1.

Table 1. The performance of algorithms with K=2

Topology Optimal Ratio (%) Time Consumption(ms)
10*10 Grid network 89.22% 187ms
FatTree with n=8,m=4 86.21% 15ms
Any-to-Any network with 100 nodes 92.35% 188ms
m*n Leaf-Spine network with m=10,n=20 95.22% 156ms
Polska 91.83% 5ms
NSFNet 98.84% 5ms

Through the result in Table 1, we can conclude that: our algorithm can get nearly optimal

results in an acceptable time so that it is efficient and can be applied to most of the networks.

6.2 Performance Analysis
(1) Simulation Setup

To evaluate the performance of the method, we carry out a simulation with OMNET++ 4.5
and INET. The simulation topology is a 5*5 grid network as Fig. 14 shows. The working flow
is from cluster1 to cluster2 and the flow can be classified into 9 sub flows depending on
different source and destination. In order to generate background flows, every host except
hosts of two clusters randomly send packet to another host with a shortest path.The SDN
architecture follows the instruction of [29] and uses out-of-band control mode for simplicity.
Every switch port uses FCFS and has a maximum transmit rate of 1Mbps. The working path is
the shortest path from S to T and the failed link is showed in Fig. 14.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5217

In this section, besides segment protection, multipath rerouting (MPR) method introduced
in [2] is chosen as the comparison method because it is a typical method to solve the
congestion problem and has good load balancing performance in link failure recovery. In
segment protection, the backup path is the shortest path from failure node to the destination. In
multipath rerouting and source routing SDN, we choose 2 backup paths for every link. And the
parameters we use are shown in Table 2.

Table 2. Parameters used in simulation

Parameter Value Description
γ 1.2 Parameter to determine the lower bound of available

bandwidth provided by backup paths in formula (2).
τ 1 Parameter to determine the threshold of available bandwidth

provided by backup paths to re-activate backup path planning.
ω 0.6 The weight to average the network status information in

formula (17).
t 0.01s The sampling interval of the network status information during

simulation.

The simulation lasts 100s and link failure occurs at 20s. In practice, the fast link failure

recovery time may be very short because the controller may repair the failed link or build a
new end-to-end path very soon after detecting the link failure. For the sack of demonstration,
we presume that the controller doesn’t react to the link failure so that the fast link recovery
process can last long enough to evaluate its performance.

Fig. 14. The simulation topology

(2) Result Analysis

In order to verify the effectiveness of the proposed algorithm, two different traffic patterns
are simulated: light load and heavy load. Under the light load situation, data packet arrival
interval obeys the exponential distribution withλ=0.1, and the average link utilization of the
network is about 10%~20%. Under the heavy load situation, the interval of data packet arrival
time obeys the exponential distribution withλ=0.01. The average link utilization of working
path is about 60%~80%.

Under the light load situation, the average link utilization curves of the backup paths in the
three methods are shown in Fig. 15:

5218 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

(a) Segment Protection (b) Multipath Rerouting (c) Source Routing SDN

Fig. 15. Link Utilization in Light Weight Situation

According to the data recorded in simulation, the average link utilization of segment
protection is 38.76% after rerouting process, which is higher than the 18.32% of MPR and
16.54% of SR-SDN. And the CDF of link utilization of three methods are shown in Fig. 16.
Compared with MPR, the link utilization of SR-SDN is about the same because the difference
of the backup paths’ load is very small after the processing of formula (17), which makes the
controller rarely restarts the backup path planning or reassign the flows. Thus, it can make
algorithm avoiding unnecessary adjustment when available bandwidth is sufficient. During
the simulation, the backup path planning is never re-activated and the number of flow
redistribution is 4. In summary, only with a few adjustments, SR-SDN can achieve better load
balancing performance with an improvement of 57.33% comparing with segment protection
and 9.7% comparing with MPR under the light load situation.

Fig. 16. The CDF of link utilization in light load situation

Under the heavy load situation, the link utilization curves of three methods are shown in Fig.

17.

(a) Segment Protection (b) Multipath Rerouting (c) Source Routing SDN

Fig. 17. The link utilization during flow rerouting process

When traffic load is heavy, segment protection is totally not working as Fig. 17(a) shows
because backup path can’t provide sufficient bandwidth to reroute interrupted flows. On the
contrary, MPR and SR-SDN can balance the load of different backup paths to make full use of
available bandwidth provided by network. And the CDF of link utilization of three methods
are shown in Fig. 18(a). It can be seen that SR-SDN can significantly reduce the average link
utilization compared with segment protection and MPR. We call it congestion when link
utilization is over 80%. And the SR-SDN reduces the congestion possibility from 87.1% of
segment protection and 1.06% of Multipath Rerouting to zero.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5219

 (a) The CDF of link utilization in (b) The CDF of end-to-end delay suffered by

heavy load situation rerouted packets
Fig. 18. Cumulative distribution function of link utilization and delay

With the improvement of the link utilization, rerouted packets in SR-SDN can achieve

better delay performance and reduce the average delay about 21.2% compared with MPR as
Fig. 18(b) shows. In summary, the SR-SDN method proposed in this paper can achieve fast
failure recovery with much less overhead and significantly reduce the possibility of congestion
during flow rerouting process.

7. Conclusion
In this paper, we propose a source routing based link protection method for link failure in

SDN. Compared with other failure recovery methods used in SDN, it mainly has three
advantages: First, it can perform local link failure recovery so that the time consumption is
much less than 50ms; Second, with source routing method, we store the working path and
backup path information in packet header rather than flow entries installed in switches. So it
can achieve fast link failure recovery with a very low flow entry consumption; Third, through
source routing SDN, we decouple the flow from the route that they transmit, so that the
working paths and backup paths for flows can be easily reconstructed according to the network
status and more flexible traffic engineering for link protection can be realized. Finally, we
design congestion aware backup path planning and selection algorithms taking into account
the variability of network status so that the performance of the rerouting algorithms can be
further improved. Through evaluations and simulations, it can be concluded that the method
proposed in this paper can achieve better performance than the latest failure recovery methods.

However, there are still some issues to be solved in implementation. For example, the
source routing SDN proposed in this paper may introduce overhead to the packet header and
have some scalable problems when applied in large scale network. Moreover, the sampling
interval and the acquisition delay of network status may cause errors of the backup paths
planning and selection algorithms.

Our next step research will focus on solving the problems mentioned above and mainly
includes following aspects: First, we will develop customized source routing SDN mechanism
to minimize the overhead of packet header and eliminate the scalability issues; Second, we
will further optimize the proposed mechanism and algorithms to minimize the impact of
sampling interval and acquisition delay of network status; Third, we will further explore the
application scenarios of proposed method to enhance its practicality.

5220 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

References
[1] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci and P. Castoldi, "OpenFlow-based segment

protection in Ethernet networks," IEEE/OSA Journal of Optical Communications and Networking,
vol. 5, no. 9, pp. 1066-1075, September, 2013. Article (CrossRef Link)

[2] A. Capone, C. Cascone, A. Q. T. Nguyen and B. Sansò, "Detour planning for fast and reliable
failure recovery in SDN with OpenState," in Proc. of 11th Int. Conference on Design of Reliable
Communication Networks , pp. 25-32, March 25-27, 2015,.Article (CrossRef Link)

[3] N. Kitsuwan, D. B. Payne and M. Ruffini, "A novel protection design for OpenFlow-based
networks," in Proc. of 16th Int. Conference on Transparent Optical Networks, pp. 1-5, July 6-10,
2014. Article (CrossRef Link)

[4] R. M. Ramos, M. Martinello and C. Esteve Rothenberg, "SlickFlow: Resilient source routing in
Data Center Networks unlocked by OpenFlow," in Proc. of 38th IEEE Conference on Local
Computer Networks, pp. 606-613, October 21-24, 2013. Article (CrossRef Link)

[5] S. Cevher, M. Ulutas, S. Altun and I. Hokelek, "Multi Topology Routing based IP Fast Re-Route
for Software Defined Networks," in Proc. of 2016 IEEE Symposium on Computers and
Communication (ISCC), pp. 1224-1226, June 27-30, 2016. Article (CrossRef Link)

[6] B.Jenkins, D.Brungard, M.Betts, N.Sprecher, S.Ueno, “MPLS-TP Requirements”, RFC5654,
IETF, 2009. Article (CrossRef Link)

[7] W. Braun and M. Menth, "Scalable resilience for Software-Defined Networking using Loop-Free
Alternates with loop detection," in Proc. of 1st IEEE Conference on Network Softwarization, pp.
1-6, April 13-17, 2015. Article (CrossRef Link)

[8] Adami, D., et al, "Class-based traffic recovery with load balancing in software-defined networks,"
IEEE GLOBECOM 6th Management of Emerging Networks and Services Workshops, pp.161-165,
December 8-12, 2014. Article (CrossRef Link)

[9] D.Katz, D.Ward, “Bidirectional Forwarding Detection,” RFC-5880, IETF, 2010.
Article (CrossRef Link)

[10] Sharma, Sachin, et al, "OpenFlow: Meeting carrier-grade recovery requirements ," Computer
Communications, vol. 36, no. 6, pp.656-665, 2013. Article (CrossRef Link)

[11] N. L. M. v. Adrichem, B. J. v. Asten and F. A. Kuipers, "Fast Recovery in Software-Defined
Networks," 2014 Third European Workshop on Software Defined Networks, pp. 61-66, September
1-4, 2014. Article (CrossRef Link)

[12] S. S. W. Lee, K. Y. Li, K. Y. Chan, G. H. Lai and Y. C. Chung, "Software-based fast failure
recovery for resilient OpenFlow networks," in Proc. of 7th Int. Workshop on Reliable Networks
Design and Modeling, pp. 194-200, October 5-7, 2015. Article (CrossRef Link)

[13] S. S. W. Lee, K. Y. Li, K. Y. Chan, G. H. Lai and Y. C. Chung, "Path layout planning and software
based fast failure detection in survivable OpenFlow networks," in Proc. of 10th Int. Conference on
Design of Reliable Communication Networks, pp. 1-8, March 31-April 3, 2014.
Article (CrossRef Link)

[14] Kotani, Daisuke, and Y. Okabe, "Fast Failure Detection of OpenFlow Channels," in Proc. of The
Asian Internet Engineering Conference 2015, pp. 32-39, November 18-20, 2015.
Article (CrossRef Link)

[15] S. Sharma, D. Staessens, D. Colle, M. Pickavet and P. Demeester, "Enabling fast failure recovery
in OpenFlow networks," in Proc. of 8th Int. Workshop on Design of Reliable Communication
Networks, pp. 164-171, October 10-12, 2011. Article (CrossRef Link)

[16] R. Kanagavelu, L. N. Mingjie, K. M. Mi, B. S. Lee, Heryandi and H., "OpenFlow based control for
re-routing with differentiated flows in Data Center Networks," in Proc. of 18th Int. Conference on
Networks, pp. 228-233, December 12-14, 2012. Article (CrossRef Link)

[17] S. Astaneh; S. Shah Heydari, "Optimization of SDN Flow Operations in Multi-Failure Restoration
Scenarios," IEEE Transactions on Network and Service Management , vol.6, no.99, pp.1-11, June,
2016. Article (CrossRef Link)

[18] S. Sharma, D. Staessens, D. Colle, M. Pickavet and P. Demeester, "Fast failure recovery for
in-band OpenFlow networks," in Proc. of 9th Int. Conference on Design of Reliable

https://doi.org/10.1364/JOCN.5.001066
https://doi.org/10.1109/DRCN.2015.7148981
https://doi.org/10.1109/ICTON.2014.6876515
https://doi.org/10.1109/LCN.2013.6761297
https://doi.org/10.1109/ISCC.2016.7543903
https://doi.org/10.17487/RFC5654
https://doi.org/10.1109/NETSOFT.2015.7116180
https://doi.org/10.1109/GLOCOMW.2014.7063424
https://doi.org/10.17487/RFC5880
https://doi.org/10.1016/j.comcom.2012.09.011
https://doi.org/10.1109/EWSDN.2014.13
https://doi.org/10.1109/RNDM.2015.7325229
https://doi.org/10.1109/DRCN.2014.6816141
https://doi.org/10.1145/2837030.2837035
https://doi.org/10.1109/DRCN.2011.6076899
https://doi.org/10.1109/ICON.2012.6506562
https://doi.org/10.1109/TNSM.2016.2580590

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5221

Communication Networks, pp. 52-59, March 4-7, 2013. Article (CrossRef Link)
[19] Sahri, N. M., and K. Okamura, "Fast failover mechanism for software defined networking:

OpenFlow based," International Conference on Future Internet Technologies ACM, pp. 1-2, June
18-20, 2014. Article (CrossRef Link)

[20] "OpenFlow Switch Specification Version 1.5.0", Available:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/ope
nflow/openflow-switch-v1.5.0.pdf , Open Network Foundation, December, 2014.

[21] A.Atlasand, A.Zinin, "Basic Specification for IP Fast Reroute: Loop-Free Alternates, " RFC5286,
IETF, 2008. Article (CrossRef Link)

[22] C. Y. Chu, K. Xi, M. Luo and H. J. Chao, "Congestion-aware single link failure recovery in hybrid
SDN networks," in Proc. of 2015 IEEE Conference on Computer Communications, pp. 1086-1094,
April 26 – May 1, 2015. Article (CrossRef Link)

[23] C. Y. Chu, K. Xi, M. Luo and H. J. Chao, "Congestion-aware single link failure recovery in hybrid
SDN networks," in Proc. of 2015 IEEE Conference on Computer Communications (INFOCOM),
pp. 1086-1094, April 26-May1, 2015. Article (CrossRef Link)

[24] M. Soliman, B. Nandy, I. Lambadaris and P. Ashwood-Smith, "Exploring source routed
forwarding in SDN-based WANs," in Proc. of 2014 IEEE International Conference on
Communications , pp. 3070-3075, June 10-14, 2014. Article (CrossRef Link).

[25] Soliman, M., Nandy, B., Lambadaris, I., & Ashwood-Smith, P. "Source routed forwarding with
software defined control, considerations and implications," in Proc. of 2012 ACM Conference on
CONEXT Student Workshop, pp.43-44, December 4-9, 2012. Article (CrossRef Link)

[26] Jyothi, Sangeetha Abdu, M. Dong, and P. B. Godfrey. "Towards a flexible data center fabric with
source routing," in Proc. of 2015 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, pp.1-8, June 17-18 , 2015. Article (CrossRef Link).

[27] "Online SDN Experimental Plateform," Available:
 http://www.sdnlab.com/experimental-platform/, May, 2016.

[28] Pankaj Thorat, et al. "Optimized self-healing framework for software defined networks," in Proc.
of 9th Int. Ubiquitous Information Management and Communication, pp. 1-6, January 8-10, 2015.
Article (CrossRef Link)

[29] Klein, Dominik, and M. Jarschel, "An OpenFlow extension for the OMNeT++ INET
framework," in Proc. of 6th Int. ICST Conference on Simulation TOOLS and Techniques, pp.
322-329 , March 6-8, 2013. Article (CrossRef Link).

https://doi.org/10.1109/DRCN.2013.6078921
https://doi.org/10.1145/2619287.2619303
https://doi.org/10.17487/RFC5286
https://doi.org/10.1109/INFOCOM.2015.7218482
https://doi.org/10.1109/INFOCOM.2015.7218482
https://doi.org/10.1109/ICC.2014.6883792
https://doi.org/10.1145/2413247.2413274
https://doi.org/10.1145/2774993.2775005
http://www.sdnlab.com/experimental-platform/
https://doi.org/10.1145/2701126.2701235P
https://doi.org/10.4108/icst.simutools.2013.251722

5222 Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing

Liaoruo Huang received his B.E. degree in information security from Xidian University,
Xian, China, in 2011. And he received the M.S. degree in information security science and
technology from PLA University of Science and Technology, Nanjing, China, in 2014. He is
currently working toward Ph.D. degree in College of Communications Engineering, PLA
University of Science and Technology. His research interests include software-defined
network, next generation networks and wide area network.

Qingguo Shen received his Ph.D. degree from PLA University of Science and Technology,
Nanjing, China, in 1994. He is currently a full professor in College of Communications
Engineering,, PLA University of Science and Technology. His research interests include next
generation networks, M2M and wireless networks.

Wenjuan Shao received her B.E. degree in computer communication and M.S. degree in
computer networks from Beijing University of Posts and Telecommunications, Beijing,
China, in 2001 and 2004 respectively. She worked as an engineer for the China Mobile
Communications Corporation from 2004 to 2012. In 2007, she became a senior lecture at
Zijin College, Nanjing University of Science and Technology. She is currently working
toward Ph.D. degree in College of Communications Engineering, PLA University of Science
and Technology. Her research interests include D2D, social aware network and software
defined network.

