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Abstract 
 
The separation of control plane and data plane in Software Defined Network (SDN) makes it 
flexible to control the network behavior, while also causes some inconveniences to the link 
failure recovery due to the delay between fail point and the controller. To avoid delay and 
packet loss, pre-defined backup paths are used to reroute the disrupted flows when failure 
occurs. However, it may introduce large overhead to build and maintain these backup paths 
and is hard to dynamically construct backup paths according to the network status so as to 
avoid congestion during rerouting process. In order to realize congestion aware fast link 
failure recovery, this paper proposes a novel method which installs multi backup paths for 
every link via source routing and per-hop-tags and spread flows into different paths at fail 
point to avoid congestion. We carry out experiments and simulations to evaluate the 
performance of the method and the results demonstrate that our method can achieve 
congestion aware fast link failure recovery in SDN with a very low overhead. 
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1. Introduction 

The separation of data plane and control plane in Software Defined Network (SDN) 
provides programming capabilities for network and flow transmission, bringing convenience 
to the network virtualization, load balancing, QoS and other applications. However, this 
separation also makes it difficult to perform fast link failure recovery in SDN, because the 
network depends on the remote controller to handle the failure, which may introduce large 
delay, therefore cause serious packet loss and interruption of network service.  

In order to satisfy the requirement of recovery time in carrier grade network, several 
proactive mechanisms have been put forward to realize approximate zero loss and fast link 
failure recovery in SDN[1]~[5]. In proactive mechanisms, end-to-end or per-hop preplanned 
backup paths are used to guarantee that when link failure occurs, the switch adjacent to the fail 
point can reroute the flow immediately through the backup paths to the destination without the 
controller’s decision. Through experiments, it is shown that they can achieve much shorter 
recovery time than the traditional methods. However, there are still some concerns about the 
proactive mechanism: First, it may need large quantities of flow entries to build backup paths 
and complex mechanism to keep them active; second, the preplanned backup paths once 
constructed, are inconvenient to be modified, deleted and rebuilt, so it is hard to adaptively 
adjust backup paths according to network status and therefore may cause congestion when 
rerouting the interrupted flows. 
    In summary, there are three objectives that failure recovery method has to achieve: (1)Fast: 
for the requirements of critical tasks in carrier grade network, it has to be as fast as possible to 
detect and locate the failure point and react to the link failure. And the total failure recovery 
time should be less than 50ms[6]; (2) Low overhead: the flow entries that backup paths 
consume should be as few as possible so that the network can accept more flows; (3) 
Congestion aware: the backup path planning and flow rerouting process should put the 
network status into consideration, so as to avoid congestion of other parts of network. 

There has been a lot of works concentrating on the objective (1) and (2)[1]~[7], but few 
works notice the congestion problem during rerouting process. In the traditional way, it has to 
reserve bandwidth for the protected flows on the backup paths to avoid packet loss and service 
degradation caused by congestion[8]. However, this method may lead to waste of network 
resource and is complex to deploy in practice. In order to achieve the three objectives above, 
this paper proposes a congestion aware fast link failure recovery method of SDN. The method 
uses source routing to control flow’s route at the edge of the network. According to the 
predefined multi backup paths for every link and the bandwidth demand of every flow, the 
controller inserts per-hop backup path tag to the source routing header of the packet to identify 
the specific backup path for the flow at every hop. With this mechanism, the interrupted flows 
are transmitted through multiple backup paths during rerouting process so that the congestion 
can be avoided. When failure occurs, the switch adjacent to the fail point updates the source 
routing header of the packet according to the backup path tag, then the packet can bypass the 
fail point. This method takes advantages of topology independent feature of source routing and 
decouples the backup path planning and backup path selection. Therefore, it can realize 
dynamically flow assignment among backup paths according to the network status.  

Compared with the traditional methods, our method mainly has four advantages: First, it 
can perform local link failure recovery without involvement of the controller so that it can 
minimize the recovery time. Second, it can achieve rather low flow entry consumption 
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because it stores route information in the packet header rather than flow entries installed in the 
switch. Third, it considers the congestion problem during rerouting process which is ignored 
by most of the traditional methods, and can significantly reduce the possibility of congestion. 
Fourth, it can be applied to handle both single link failure and single node failure. The main 
contributions of this paper are following: (1) We propose a novel architecture and 
implementation of SDN based on source routing; (2) We propose a congestion aware fast link 
failure recovery method based on source routing SDN; (3) We give the formalization and 
solution to the backup path planning and selection problems; (4) We analyze the overhead and 
evaluate the performance of this method. 

The remainder of this paper is organized as follows: Section 2 gives some relate works of 
SDN link failure recovery; Section 3 introduces the architecture of the proposed method. 
Section 4 gives formalization and solution to the backup path planning and selection 
problems; Section 5 gives the implementation of proposed method; Section 6 carries out 
evaluation and simulations of the proposed method; Section 7 gives the conclusion. 

2. Related Work 

2.1 Link Failure Detection 
The link failure recovery time is consisted of two parts: failure detection time and reaction 

time. In order to realize fast link failure recovery, it is important to detect and locate the failure 
immediately after the failure happens. Loss of Signal (LOS) and Bidirectional Forwarding 
Detection (BFD)[9] are widely used to detect link failures. However, the time of failure 
detection using LOS may be hundreds of milliseconds which can’t meet the requirement of 
carrier grade network. BFD uses a simple “hello-echo” protocol between two end terminals of 
a path and the time consumption is below 50ms[10]. But, BFD is unable to locate the failure 
link in the path so that it can be only used to detect failure of a path rather than a specific link. 
To solve this problem, authors of [11] propose a per-link BFD mechanism which applies the 
BFD between the terminals of a link rather than a path. Through experiment, it can complete 
failure detection within 10ms.  

Besides, in [12] and [13], an path monitoring and failure location mechanism is proposed. 
With a monitoring cycle covering all links in a given network, the Link Status Monitoring 
(LSM) packet is used to supervise the path alive status. The switches which have receive LSM 
packet send the Failure Location Identification (FLI) packets to the controller. So when there 
is a link failure, the failure node can be precisely located according to the FLI packets. 
Moreover, authors of [14] put forward a link failure detection mechanism which is applied to 
detect the failure of control channel between switches and the controller using the information 
sharing mechanism between multiple controllers.  

With the efficient and fast detection methods above, our failure recovery method can be 
realized and the focus of our paper is how to minimize the reaction time after failure detection. 

2.2 Reactive Link Failure Recovery 
There are two mechanisms to handle the link failure: reactive and proactive. The typical 

reactive method is fast path restoration proposed in [15], [16] and [17]. With this method, the 
switch informs the controller of topology change event. Then the controller computes and 
installs the new path for the interrupted flows. The time consumption of this process may be 
large, therefore it may cause packet loss and service interruption. Besides, authors of [15] also 
propose an improved version of fast path restoration called “predetermined restoration”. 
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Different from fast restoration, the backup paths are preplanned with priorities and the 
controller can pick a proper backup path for the disrupted flows.  

The reactive methods mainly have two disadvantages: First, due to the involvement of the 
remote controller, the time consumption of the link failure recovery can’t meet the demand of 
carrier grade network, which is demonstrated through experiments in [10] and [18]; Second, 
computing and installing paths for interrupted flows may introduce heavy burden to the 
controller, and therefore degrade the performance of the entire network. 

2.3 Proactive Link Failure Recovery 
To overcome the disadvantages of reactive methods, proactive methods use static 

preplanned backup paths to reroute the interrupted flows without involvement of the controller. 
And the key of the proactive methods is a handover mechanism which can disable the flow 
entries of old paths and then automatically put the backup path’s flow entries into use. In 
Openflow-enabled switches, there is no such mechanism but entry expiry timer as “idle time 
out” and “hard time out”. So in order to realize fast proactive link failure, [1] proposes a 
method called “Auto-Reject” which can detect the link failure and disable the flow entries. In 
[19], authors put forward a flow entry expiry mechanism to automatically delete the entries of 
old path when link failure occurs. In [2], authors use Openstate to monitor the packet and 
switch ports state, and reallocate flow to new path when switch port is down. However, the 
mechanisms mentioned above need additional modification to the switch and are hard to be 
applied in practice. The Openflow v1.5 provides a fast failover mechanism called failover 
group table through instantiating multi action lists for the same flow entry and applying them 
according to the link status[20]. It doesn’t need any modification to the Openflow protocol and 
can achieve automatically handover according to the alive status of action lists. 

Based on these handover mechanisms above, several proactive methods have been put 
forward. In order to minimize the failure recovery time, the authors of [1] propose an 
improvement of link protection called segment protection. In this scheme, backup paths are 
planned on every hop instead of end-to-end, so that flow can be rerouted at local switch 
adjacent to the fail link and achieve shorter failure recovery time. However, segment 
protection needs large quantities of flow entries to build backup paths and complex 
mechanism to keep them active. 
    For the purpose of reducing the number of flow entries to build backup paths in segment 
protection, authors of [3] put forward a novel design called Independent Transient Plane (ITP)  
which consists of links that can be shared by different backup paths to reroute flows so that the 
number of flow entries is reduced. Besides, authors of [7] apply Loop-Free Alternates[21] to 
the Openflow-based network. With additional loop detection mechanism, it can achieve 
maximum protection coverage with a very low overhead. However, there are still two 
concerns about these methods: first, the consumption of flow entry is still large and need to be 
further optimized; second, the backup path planning process hasn’t put link status into 
consideration so that it may cause congestion during rerouting process. 

To solve the congestion problem, [13] proposes a backup path optimization method which 
put the link utilization into consideration. Optimization model is put forward and evaluated. 
Although using the optimized backup paths can reduce the possibility of congestion, but it is 
still not efficient enough because static paths can’t be adaptively adjusted according to the 
network status. 

In [2], authors propose a Multi Path Rerouting (MPR) method based on Openstate. This 
method improves the segment protection with planning multi-backup paths for every link and 
distributing flows into backup paths to solve the congestion problem. With an optimization 
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model, this method can significantly reduce the possibility of congestion, but the backup paths 
are still static planned and need too many flow entries. 
    A source routing based method called SlickFlow is proposed in [4]. It encodes all the 
backup paths into the packet header. When link failure occurs, switch looks up the backup path 
and reroutes the packet. Obviously, this method introduces too much overhead to the packet 
header and uses static backup paths as well. 

In [22] and [23], the congestion aware fast link failure recovery method in IP and Openflow 
hybrid network is researched. Multi backup paths are pre-planned and installed in the 
Openflow switch. The IP switches forward interrupted packets directly to the Openflow 
switch when failure happens. Then Openflow switch picks a proper backup path to reroute the 
packet. Although this method can handle the congestion problem well, but it is efficient in IP 
network rather than SDN.  

In summary, there is no method that can fulfill the three requirements mentioned in Section 
1 at the same time for now, and the main reason of that is the tight coupling of flow and the 
path flow transmits in SDN. In our method, we use source routing to separate the flow and its 
path so that it can achieve congestion aware fast link failure with a very low overhead. 

3. The Proposed Solution for Fast Link Failure Recovery 

3.1 Packet Header Encoding 
Recent years, source routing SDN has attracted some attention as it can reduce the number 

of entries used in SDN without losing the programmability of flows at the same 
time[24][25][26]. However, source routing is not yet supported in the latest Openflow. So in 
this paper we modify the VLAN tag of 802.1q to realize source routing. The vlan_id field and 
vlan_user_priority field are used to encode route information. 
     Different from traditional source routing, the next hop information has two parts in our 
method: output port ID and backup path tag. The output port ID is encoded in vlan_id(VID) 
field while backup path tag is encoded in vlan_user_priority(VUP) field as Fig. 1 shows: 
 

Tag Protocol ID: 0x8100  
2Bytes

User Priority 
3bit

CFI 
1bit

VLAN ID 
12bit

  

Used as backup path tag Used as next-hop information 

VLAN Tag VLAN Tag VLAN Tag……  

Source Routing Header  
Fig. 1. Packet Header Encoding 

 
The length of VID field in VLAN tag of 802.1q is 12bit so that it can support 212

 of next 
hops at most. And 8 backup paths can be supported at most as VUP field is 3bit long. The 
switch can transmit the packet along the working path through matching the VID field when 
network is normal, and steer the packet to backup path through matching the VUP field when 
link failure occurs. 

In addition, the length of the VLAN tag and source routing header may introduce overhead 
to the packet and therefore limit the scalability of the source routing SDN. However, the length 
of packet header can be further optimized as there are only a few bits being used in VLAN tag. 
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We believe that with the arbitrary matching ability provided by Openflow, source routing 
mechanism with shorter length of packet header can be developed in the near future.   
 

3.2 Source Routing SDN 
Source Routing SDN (SR-SDN) mainly has three functions: packet header programming, 

packet forwarding and packet steering. In order to realize fast failure recovery, we leverage the 
fast failover group table of Openflow, which can perform different action list according to the 
specific situation. 
 
(1) Packet header programming 

Packet header programming assembles the packet’s source routing header with VLAN tags 
introduced in 3.1 according to the flow entries and action-list preinstalled by the controller as 
Fig. 2 shows:  

 

Execute 
Action_List_1:
Push Vlan Tag1;
Push Vlan Tag2;
……
Push Vlan Tagn;
Goto FE_ID2;

 

 

Ingress 
Processing

Egress 
Processing

SrcAdd&&DesAdd High Action_List_1

Match field Priority Instruction

FE_ID1

Flow entry ID

match
Packet in

Packet out

Vlan_id High Goto Group_ID1
Match field Priority Instruction

FE_ID2
Flow entry ID

Flow Table 0 Flow Table 
1

Output Port1

Instruction

Group_ID1

Flow Group ID

Failover Group Table

Fast Failover

Group Type

 

Packet Header Programming

Fig. 2. Packet header programming 
 

With the Push_vlan_tag action provided by Openflow, switch can nest several VLAN tags 
to the header of the packet so that the route information is formed.  

 
(2) Packet forwarding 

Packet forwarding process forwards the packet according to the next hop information 
formed by packet header programming process as Fig. 3 shows: 

 

Vlan_id==id1 High Goto Group_ID1
Vlan_id==id2 High Goto Group_ID2

Match field Priority Instruction

…… …… ……

FE_ID1
FE_ID2

Flow entry ID

……

Vlan_id==idn High Goto Group_IDnFE_IDn

match
Packet in

Packet out

Execute Action_List_2

Instruction

Group_ID2

Flow Group ID

Fast Failover

Group Type

Execute Action_List_2:
Pop the outer most Vlan Tag
Output Port_2

Flow Table 0 Failover Group Table

 

Packet Forwarding  
Fig. 3. Packet forwarding 

 
Through matching the VID field, switch finds the proper port to output the packet and 

deletes the outer most VLAN tag in packet’s header with Pop_Vlan_Tag action provided by 
Openflow. 

 
(3) Packet Steering 

Packet steering steers the packet to a new path through updating the source routing header 
as Fig. 4 shows: 



5206                                            Huang et al.: Congestion Aware Fast Link Failure Recovery of SDN Based on Source Routing 

 
Fig.4 Packet steering process 

 
    When link failure occurs, the alive status of the primary action list in failover group table is 
changed to DOWN. Then the packet is processed by the secondary action list which updates 
the packet’s source routing header through popping and pushing VLAN tags according to the 
backup path tag and the destination IP address. After updating process, the packet is checked 
again and output according to the new source routing header. 

3.3 Procedures of the Method 
The congestion aware fast link failure recovery method proposed in this paper contains 3 

procedures: backup path planning, backup path selection, fast link failure recovery. The 
former two procedures are conducted in the controller and edge switches, and the last 
procedure is conducted in the core switches only when link failure occurs. 

In the backup path planning process, according to the network status, the controller finds the 
optimal backup path set which can provide sufficient available bandwidth with minimal hops. 
Besides, the number of the backup paths for every link should be restricted to reduce the 
complexity of  backup path planning algorithm and flow entry consumption for path 
construction. Then the controller tags every backup path and installs corresponding flow 
tables to the switches. The planning process is shown in Fig. 5:  

 

 
Fig. .5 The backup path planning process 

 
In the backup paths selection process, according to the bandwidth demands of flows, the 

controller allocates every flow to a proper backup path at every hop and inserts the tag of 
selected backup path into the per hop information of packet header. The selection process is 
shown in Fig. 6:  
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Fig. 6. The backup paths selection process 

 
The fast link failure is performed only when link failure occurs. In fast link failure revocery 

process, the packets interrupted are processed by the fast failover group table, which can steer 
the packet to the proper backup path according to the backup path tag in the packet header and 
destination IP address. The failure recovery process is shown in Fig. 7 as follows: 

 
Fig. 7. The fast failure recovery process 

3.4 Example 
Consider the topology as Fig. 8, there are two working flows from S to T, which marked as 

flow1 and flow2. The transmit rate of flow1 is 50Mbps, and flow2 is 30Mbps. The working 
path is S→D→T. Every port of switch is identified by port id as Fig. 8 shows, then we can 
demonstrate our fast failure recovery method as following steps: 

 

 
Fig. 8. Topology of network 
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Step1: Backup path planning. There are two links have to be protected: S→D and D→T. We 
presume two backup paths for each link are used. Then the controller performs the backup 
paths planning algorithm for links S→D and D→T according to the network status. We 
assume that after backup paths planning process, two backup paths S→A→B→C→T and 
S→E→F→G→T are chosen for S→D, and are tagged by psd,1 and psd,2 separately. Similarly, 
The paths D→B→C→T and D→F→G→T are chosen for D→T and are tagged by pdt,1 and 
pdt,2. Then the controller installs flow entries on switch S and D, which match packet’s VUP 
field and update the packet header. 
    Step2: Backup path selection. The available bandwidths of backup paths psd,1 and psd,2 at 
switch S are assumed to be 70Mbps and 60Mbps. After the backup paths selection process, we 
assume that the controller assigns flow1 to path psd,1 and flow2 to path psd,2 at switch S 
according to the available bandwidth of backup paths and the demands of flows. Then the first 
hop information of flow1 is organized as “1psd,1”. The “1” represents the output port ID and the 
“psd,1” represents the backup path id. In addition, if the backup path tag is X, then there is no 
backup path for the flow. After the same processes in switch D, we assume that the packet 
header of flow1 is “1psd,11pdt,1” and that of flow2 is “1psd,21pdt,2”.   
    Step3: Fast link failure recovery. We assume link D→T is failed at sometime and then fast 
recovery process starts. We take flow1 as example. At switch S, it checks the outer most 
VLAN tag which is “1psd,1”. After matching process, switch deletes the tag “1psd,1” and the 
packet header changes from “1psd,11pdt,1” to “1pdt,1”. Then switch S outputs the packet through 
port1 as there is no link failure at link S→D. At switch D, the packet’s header is “1pdt,1” and 
port1 is failed. Then switch D checks the backup path ID which is pdt,1. According to the flow 
entries installed in step1, switch D pops the VLAN tag “1pdt,1” and pushes VLAN tags “0X”, 
“1X”, “3X” , which represent the backup path 1: D→B→C→T at switch D. Then the packet is 
checked again and output through port3. The same actions are also performed on flow2 so that 
the interrupted flows can bypass the failed link. 

4. Backup Path Planning and Selection 

4.1 Backup Path Planning 
The network can be presented by a bidirectional graph G(V,E), V is the set of nodes in graph 

G and E is the set of links in graph G. Let’s define the following parameters: 
 

Dsd The set of paths from source s to destination d; 
B The set of backup paths which are selected; 
F The set of flows need to reroute; 
eij

p Indication function which is equal to 1 if link (i,j) belongs to path p, and 0 otherwise; 
tp

B Indication function which is equal to 1 if path p is selected to B, and 0 otherwise; 
cp The available bandwidth of path p; 
(k,o) The failed link (k,o); 
fi The flow i; 
c(fi) The bandwidth demand of flow fi; 
ri

j,h Indication function which is equal to 1 if flow fi is assigned to path j at hop h, and 0 
otherwise; 

dp,h The total bandwidth demand of flows assigned to path p at hop h; 
pv The number of ports of switch v; 
Nump The upper bound of the number of backup paths for every link; 
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 In backup path planning process, we have to find a set of backup paths which can meet the 
following requirements: (1) Any one of the backup path should not contain the failure node 
and be loop free;(2) The backup paths should be link disjoint; (3)The number of backup paths 
for every link should be no more than the upper bound Nump; (4)The backup paths should 
provide as much available bandwidth as possible; (5) The backup paths should be as short as 
possible. So we can formalize the problem to a multi objective optimization problem as (1) 
shows: 
                       min[ , ], ( , ) ,  

sd sd

p B B
ij p p p sd

p D ij E p D
V e t t c i j E p D

∈ ∈ ∈

=  − ∀ ∈ ∀ ∈∑ ∑ ∑                          （1） 

In practice, available bandwidth that needs to reroute flows should have a lower bound. So 
we introduce parameter γ(γ≥1), and define the lower bound as ( )i

i
c fγ ∑ . Then the problem is 

transformed to K-shortest disjoint paths with bandwidth guarantee (K-SDPBG). So we can 
have the multi constrained 0-1 integer linear programming model as follows: 

min p B
ij p

p ij
e t∑∑  

.     ( )   B
p p i sd

p i
s t t c c f p Dγ≥ , ∀ ∈∑ ∑                                                       （2） 

    p
ko sd

p
e p D = 0, ∀ ∈∑                                                               （3） 

( , )
1, , ( , )p

ij sd
i j

e p D i j E≤ ∀ ∈ ∀ ∈∑                                              （4） 

 2, , , ( , )p
ij sd

i
e i N p D i j E≤ ∀ ∈ ∀ ∈ ∀ ∈∑                             （5） 

 1, , , ( , )p
ij sd

p
e i N p D i j E≤ ∀ ∈ ∀ ∈ ∀ ∈∑                              （6） 

 , , ( , )B
p p

p
t Num i N i j E≤   ∀ ∈ ∀ ∈∑                                      （7） 

The formula (2) guarantees that the available bandwidth provided by backup paths is more 
than the lower bound. The formula (3) guarantees that any of the backup paths doesn’t contain 
the failure link. The loop free of backup paths is obtained by formula (4) and (5). And formula 
(6) represents that all the paths are link disjoint. The upper bound of backup paths number is 
defined in formula (7). And Nump should be determined by in-degree of destination node, 
minimal out-degree of nodes in working path and the bit length of backup path tag, which can 
be presented as (8): 
                                                    min{min{ }, , 2 }out in n

p i dNum p p=                                                  （8） 
 

This problem is NP hard and we propose a heuristic algorithm consisted of two procedures 
to solve the problem. First, we modify the Dijkstra algorithm to find the k disjoint shortest 
paths from s to d as Procedure1 shows. In Procedure1, we find the shortest path p from s to d as 
normal Dijkstra algorithm in every loop, which is showed in line 1~21. Then we delete the 
links contained in path p to guarantee that all paths selected are link disjointed as line 22 shows. 
Until there is no path can be found from s to d in G, the Procedure1 stops.  
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Procedure 1 ModifiedDijkstra(graph, start, destin) 
1: do 
2: for i = 0 to number of nodes do 
3:     pathList.add(start) 
4:     pathList.add(i) 
5:     pathListMap.put(i,pathList) 
6: end for 
7:   for bridge = 0 to number of nodes do 
8:     for next = 0 to number of nodes do 
9:       if startTo(bridge)+getLength(bridge,next)<startTo(next)  then 
10:         path = pathListMap.get(next) 
11:         bridgePath = pathListMap.get(bridge) 
12:         path.clear() 
13:         path.addAll(bridgePath) 
14:         path.add(next) 
15:       end if 
16:     end for 
17:   end for 
18:   flag = startTo(destin) 
19:   if flag!=INF  then 
20:     pathSet.add(pathListMap.get(destin)) 
21: end if 
22:   UpdateGraph(graph, pathListMap.get(destin)) 
23: end do 
24: while flag!=INF 
25: end while 
     
Second, we have to select n backup paths from the path set formed in Procedure1. The paths 
selected should have minimal hops in total and can provide sufficient available bandwidth. To 
solve the problem, we design a dynamical programming algorithm as Procedure2 shows. 
Backtracking is used to solve this problem and the state transmission formula can be presented 
as f[i][a][b] = min{f[i-1][a][b],f[i-1][a-a[i]][b-b[i]]}, which is shown in line 10~16. 
 
Procedure2 BackupPathSet (i, bandW, num) 
1: if i==0 
2:   if bandwidth[0]>bandW && num>0 
3:     return length[0] 
4:   end if 
5:   else return INF; 
6:   end else 
7: end if 
8: else 
9:   int temp=INF 
10:   if number>0 
11: if(BackupPathSet(i-1,bandW-bandwidth[i],num-1) ==0) 
12:       temp = BackupPathSet(i-1,bandW,num) 
13:     end if 
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14: else temp=Minimum(BackupPathSet(i-1,bandW-bandwidth[i],num-1), 
BackupPathSet(i-1,bandW,num)) 

15:     end else 
16: end if 
17:   return temp 
18: end else 

 
In practice, it is not necessary to run backup path planning process frequently because that 

with the change of network status, the backup paths may not be the optimal but can still satisfy 
the demand of flows. Therefore, we set a threshold ( )  ( 1)i

i
c fτ τ ≥∑  to trigger the backup 

path planning process. When 
p

( )B
p p i

i
t c c ft<∑ ∑  stands, the controller restarts the process 

to find more optimal backup paths. 

4.2 Backup Path Selection 
For the congestion avoidance during the flow rerouting, we have to distribute flows into 

different backup paths according to the demands of flows and the available bandwidth every 
path has. First, we define an assignment of path k at hop h as P(k) shown in (9):  

, , ,
0 1( ) { , , , }k h k h k h

h nP k r r r=                                                     （9） 
And we define the cost function of P(k) as follows: 

0

( )
( ( ))  

( )

k

k

p
k h n

k
p i i

h
g P k

c r c f

α

=
− ∑

                                       （10） 

The α is the adjustment parameter and 
kph is the length of path pk. When α is large, the flow 

tends to select a shorter path, otherwise, the flow tends to select a path with more available 
bandwidth. Then we can have the mathematical model as follows: 

max min{ ( ( ))}kg P k  

,
,. .    ( ) , ,  p h

p h i i i
i

s t d r c f f F p B= ∀ ∈ ∀ ∈∑                      （11） 

,( )= ,  ,  i p h i
i p

c f d f F p B∀ ∈ ∀ ∈∑ ∑                         （12） 

, 1 ,   p h
i

i
r p B= ∀ ∈∑                                                       （13） 

, ( ) , ,p h
p i i i

i
c r c f p B f F> ∀ ∈ ∀ ∈∑                      （14） 

Formula (11) and (12) guarantee the flow consistence. Formula (13) makes sure that a flow 
can be assigned into at most one path. Formula (14) represents that the bandwidth 
requirements of flows assigned to a path should not more than the bandwidth available. It is 
easy to prove that this problem has the property of optimal substructure. So we can use greedy 
algorithm to solve this problem as Procedure3 shows. In every loop, we find flow with 
maximal rate and path with minimal value of cost, and then assign the flow to the path. When 
there is no flow that is not assigned, algorithm stops. 
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Procedure3  FlowAlocate(FlowRate,policy,path) 
1: while set.size() != FlowRate.length() 
2:   int max = findMaxFlowRate(FlowRate) 
3:   int min = findMinCostFunction(path) 
4:   List<Integer> assignment = policy.get(min) 
5:   assignment.add(max) 
6:   policy.put(min, assignment) 
7:   set.add(max) 
8: end while 

5. Implementation 
We build our method on an online test bed supported by SDNLAB[27] to verify the 

effectiveness of our method. The experimental network shown in Fig. 9 is consisted of a 
software controller installed in Ubuntu-14.04 and five software openflow-enabled switches. 
The controller used is OpendayLight Desktop Litmus and the switch used is Open vSwtich 
2.3.0. We realize the source routing SDN and carry out experiments on failure recovery time.  

 

 
Fig. 9. Experimental network topology 

 
For the sake of demonstration, we compare our method with segment protection which 

performs local failure recovery and has the minimal recovery time. In the segment protection, 
the recovery time consists of two parts as [28] demonstrates: 

                                          （15） 

The Tdetection is the failure detection time using per-link-BFD introduced in [11] which can 
realize failure detection time below 10ms in our schema. Thandover,f is the time to activate the 
backup path of flow f in switch.  

In the method we propose, the recovery time can be presented as (16):  
                                             （16） 

The Tupdate,f is the time to activate the backup path and modify the source routing header of 
packet. The Tupdate,f may be larger than the Thandover,f as the former has to perform additional 
actions to modify the packet header. However, in the open vSwtich we carry out evaluation, 
the difference is very small even the packet number is very large and the time of a switch to 
modify the alive-status of a group table is less than 1ms. Then we evaluate the failure recovery 
time under different conditions and the result is shown in Fig. 10. 
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(a) Failure recovery time on different link ID                        (b) Failure recovery time on number of 

    disrupted flows 
Fig. 10. Failure recovery time result 

 
From formula (15) and (16), it can be seen that the failure recovery time of segment 

protection and SR-SDN is independent of network scale. Furthermore, the Fig. 10(a) 
demonstrates that the failure recovery time of both methods has no relation with the location of 
the failure point. In Fig. 10(b), as the number of flows increases, the recovery time increases in 
segment protection method because there are more group table need to modify. However, the 
increasement is so slow that it still can achieve failure recovery within 50ms even dealing with 
large quantities of group tables. At the same time, the recovery time of SR-SDN is almost 
static and independent of the number of interrupted flows, as the number of group tables need 
to modify is static. So we can conclude that the method proposed in this paper can realize 
minimal and nearly static failure recovery time as segment protection and other methods 
which perform local link failure recovery. 

Additionally, the sampling interval and the delay between switch and controller may 
influence the performance of our backup path planning and selection algorithms which make 
decision depending on the real time network status. To solve this problem, we average the 
network status information gathered from switches as formula (17) shows: 

 
1 (1 )n n nAvg wAvg w C−= + −                                                        （17） 

 
    The 1nAvg −  is the average value after (n-1)th computation. Cn is the nth sampling value of 
network status and w is the weigth value. With the processing of formula (17), the controller 
makes decision according to the trend of available bandwidth of the backup paths rather than 
the accurate value so that the mistakes caused by delay can be reduced. However, how to get 
the accurate value of w is remained to be researched and w=0.6 is recommended through 
several experiments. 

6. Evaluation 
In this section we derive analysis and simulations to evaluate the overhead and performance 

of the method this paper proposes.  

6.1 Overhead Analysis 
(1) Flow Entries Needed to Build Backup Paths 

TCAM, which is used to store flow entries, is the most valuable resource of the switch. In 
traditional link protection methods, the TCAM may be exhausted rapidly because they need 
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too many entries to build backup paths for large quantities of flows.  
Segment protection is a typical link protection method which has been widely used and ITP 

method introduced in [3] can significantly reduce the flow entry consumption. So in this 
section, we evaluate the flow entry consumption of our method and compare our method with 
segment protection and the ITP method. Consider a n*n matrix network like Fig. 11 shows. 
The source node and the destination node can form a i*j submatrix topology and we presume 
that the working path is always the border of the submatrix as dashed line shown in Fig. 11. 
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Fig. 11. n*n matrix network 

 
It has been demonstrated in [1] and [3] that the total flow entries of segment protection can 

be presented as (18): 

_ , , ,
2 1

( ) 
n i

segment protection i j n i j
i j

F N M
= =

= ×∑∑                                        （18） 

And Ni,j , Mn,i,j can be expressed by (19) and (20) according to [3]: 

,

2 4 4; 3
 

4 4 8; 3i j

j i j
N

i j j
+ − <

=  + − ≥
                                             （19） 
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4,  1  n i j i j i j

if j i j
M n i n j

if i or i j
σ σ

≠ ≠
= − + × − + × =  = =

       （20） 

In independent transient plane (ITP) method, the total number of flow entries can be 
presented as (21)~(23): 

_ _ITP working path transient planeF F F= +                                       （21） 
2 2

_ [2 2]transient planeF n n n= × + −                                       （22） 

_ , ,
2 1

[( 1) ]
n i

working path n i j
i j

F i j M
= =

= + − ×∑∑                                     （23） 

In our method, the total flow entries can be expressed as (24): 
_ _  SR SDN working path transient planeF F F− = +                                     （24） 

In the source routing schema, flow entries that find right port to output packet can be shared 
by all working paths. So the flow entries needed to build working paths can be presented as 
(25): 

2
_ 2   working pathF n p= ×                                                     （25） 

p is the number of ports in every switch and 2p is the sum of matching flow entries and fast 
failover flow tables. We construct one backup path for every link and it needs one flow entry to 
update the packet’s header at every hop. So the flow entries to build backup paths can be 
presented as (26): 
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_ , ,
2 1

[( 1) ] 
n i

backup path n i j
i j

F i j M
= =

= + − ×∑∑                                 （26） 

The total flow entries of three methods are shown in Fig. 12(a). 
It can be seen that our method has the minimal flow entry consumption among three 

methods and the advantage is expanding with the increasment of network scale. And the 
improvement of ITP and SR-SDN compared with segment protection is shown in Fig. 12(b). 
It can be demonstrated that our method can realize less flow entry overhead compared to ITP.  

 

  
(a) Total number of flow entries                         (b) Improvement compare to segment protection 

Fig. 12. The analysis of flow entries 
 

(2)  The Complexity Of Algorithms 
The complexity of Dijkstra algorithm in Procedure1 is O(n2) and can be optimized to 

O(ElogV). E is the number of links in graph G and V is the number of vertexes. K is the number 
of backup paths at every hop and N is the length of working path. In the worst case, the 
complexity of Procedure1 is O((E2+E)/2*logV). And the complexity of procedure2 is 
O(E!/(K!(E-K)!)). So the complexity of backup paths planning algorithm is presented as (27): 

 
2( ) !( ) ( log )

2 !( )!
E E N NEO Procedure1+ Procedure2 O V

K E K
+

= +
−

      （27） 

 
The complexity of Procedure3 can be presented as (28), and M is the number of flows to 

reroute: 
( 2 1)( )

2
NM M KO(Procedure3) O + +

=                                  （28） 

 
Several symmetrical and unsymmetrical topologies are used as test platforms to evaluate the 

time consumption of backup path planning algorithms in real network, such as grid network, 
FatTree, any-to-any network, NSFNet and etc as Fig.13 shows. Because the execution of the 
backup path planning algorithm is independt at every hop, so we test the algorithm only at one 
node for the sake of simplicity. We realize algorithms with Java and carry out experiments at 
PC which runs Ubuntu-14.04 with a CPU of Core i5-4210m 2.6Hz and 4GB RAM. The links 
in every topology are bidirectional and the available bandwidth is randomly distributed in 
(0,100). There are 10 flows and the rates of which are randomly distributed in (0,10). The 
experiment is repeated 50 times and the result is averaged.  
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        (d) m*n leaf-spine network                                (e) Polska                                         (f) NSFNet 

Fig. 13. Test topologies 
 

To evaluate the efficiency of algorithm, we define the optimal ratio as follows:  

 
   

p B
ij p

p ij
p B

ij p
p ij

e t  of  optimal solution
Optimal Ratio

e t of our algorithm
=

∑∑
∑∑

                  (28) 

Then we evaluate the optimal ratio and the time consumptions of our algorithms. The test 
result is demonstrated in Table 1. 

 
Table 1. The performance of algorithms with K=2 

Topology Optimal Ratio (%) Time Consumption(ms) 
10*10 Grid network 89.22% 187ms 
FatTree with n=8,m=4 86.21% 15ms 
Any-to-Any network with 100 nodes 92.35% 188ms 
m*n Leaf-Spine network with m=10,n=20 95.22% 156ms 
Polska 91.83% 5ms 
NSFNet 98.84% 5ms 

 
Through the result in Table 1, we can conclude that: our algorithm can get nearly optimal 

results in an acceptable time so that it is efficient and can be applied to most of the networks. 

6.2 Performance Analysis 
(1) Simulation Setup 

To evaluate the performance of the method, we carry out a simulation with OMNET++ 4.5 
and INET. The simulation topology is a 5*5 grid network as Fig. 14 shows. The working flow 
is from cluster1 to cluster2 and the flow can be classified into 9 sub flows depending on 
different source and destination. In order to generate background flows, every host except 
hosts of two clusters randomly send packet to another host with a shortest path.The SDN 
architecture follows the instruction of [29] and uses out-of-band control mode for simplicity. 
Every switch port uses FCFS and has a maximum transmit rate of 1Mbps. The working path is 
the shortest path from S to T and the failed link is showed in Fig. 14.  
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In this section, besides segment protection, multipath rerouting (MPR) method introduced 
in [2] is chosen as the comparison method because it is a typical method to solve the 
congestion problem and has good load balancing performance in link failure recovery. In 
segment protection, the backup path is the shortest path from failure node to the destination. In 
multipath rerouting and source routing SDN, we choose 2 backup paths for every link. And the 
parameters we use are shown in Table 2. 

 
Table 2. Parameters used in simulation 

Parameter Value Description 
γ 1.2 Parameter to determine the lower bound of available 

bandwidth provided by backup paths in formula (2). 
τ 1 Parameter to determine the threshold of available bandwidth 

provided by backup paths to re-activate backup path planning. 
ω 0.6 The weight to average the network status information in 

formula (17). 
t 0.01s The sampling interval of the network status information during 

simulation. 
 
The simulation lasts 100s and link failure occurs at 20s. In practice, the fast link failure 

recovery time may be very short because the controller may repair the failed link or build a 
new end-to-end path very soon after detecting the link failure. For the sack of demonstration, 
we presume that the controller doesn’t react to the link failure so that the fast link recovery 
process can last long enough to evaluate its performance.  

 

 
Fig. 14. The simulation topology 

 
(2) Result Analysis 

In order to verify the effectiveness of the proposed algorithm, two different traffic patterns 
are simulated: light load and heavy load. Under the light load situation, data packet arrival 
interval obeys the exponential distribution withλ=0.1, and the average link utilization of the 
network is about 10%~20%. Under the heavy load situation, the interval of data packet arrival 
time obeys the exponential distribution withλ=0.01. The average link utilization of working 
path is about 60%~80%. 

Under the light load situation, the average link utilization curves of the backup paths in the 
three methods are shown in Fig. 15: 
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(a) Segment Protection                         (b) Multipath Rerouting                          (c) Source Routing SDN 

Fig. 15. Link Utilization in Light Weight Situation 
 

According to the data recorded in simulation, the average link utilization of segment 
protection is 38.76% after rerouting process, which is higher than the 18.32% of MPR and 
16.54% of SR-SDN. And the CDF of link utilization of three methods are shown in Fig. 16. 
Compared with MPR, the link utilization of SR-SDN is about the same because the difference 
of the backup paths’ load is very small after the processing of formula (17), which makes the 
controller rarely restarts the backup path planning or reassign the flows. Thus, it can make 
algorithm avoiding unnecessary adjustment when available bandwidth is sufficient. During 
the simulation, the backup path planning is never re-activated and the number of flow 
redistribution is 4. In summary, only with a few adjustments, SR-SDN can achieve better load 
balancing performance with an improvement of 57.33% comparing with segment protection 
and 9.7% comparing with MPR under the light load situation. 

 

  
Fig. 16. The CDF of link utilization in light load situation 

 
Under the heavy load situation, the link utilization curves of three methods are shown in Fig. 

17. 
 

            
(a) Segment Protection                          (b) Multipath Rerouting                         (c) Source Routing SDN 

Fig. 17. The link utilization during flow rerouting process 
 

When traffic load is heavy, segment protection is totally not working as Fig. 17(a) shows 
because backup path can’t provide sufficient bandwidth to reroute interrupted flows. On the 
contrary, MPR and SR-SDN can balance the load of different backup paths to make full use of 
available bandwidth provided by network. And the CDF of link utilization of three methods 
are shown in Fig. 18(a). It can be seen that SR-SDN can significantly reduce the average link 
utilization compared with segment protection and MPR. We call it congestion when link 
utilization is over 80%. And the SR-SDN  reduces the congestion possibility from 87.1% of 
segment protection and 1.06% of Multipath Rerouting to zero.  
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                (a) The CDF of link utilization in                           (b) The CDF of end-to-end delay suffered by  

heavy load situation                                                             rerouted packets 
Fig. 18. Cumulative distribution function of link utilization and delay 

 
With the improvement of the link utilization, rerouted packets in SR-SDN can achieve 

better delay performance and reduce the average delay about 21.2% compared with MPR as 
Fig. 18(b) shows. In summary, the SR-SDN method proposed in this paper can achieve fast 
failure recovery with much less overhead and significantly reduce the possibility of congestion 
during flow rerouting process. 

7. Conclusion 
In this paper, we propose a source routing based link protection method for link failure in 

SDN. Compared with other failure recovery methods used in SDN, it mainly has three 
advantages: First, it can perform local link failure recovery so that the time consumption is 
much less than 50ms; Second, with source routing method, we store the working path and 
backup path information in packet header rather than flow entries installed in switches. So it 
can achieve fast link failure recovery with a very low flow entry consumption; Third, through 
source routing SDN, we decouple the flow from the route that they transmit, so that the 
working paths and backup paths for flows can be easily reconstructed according to the network 
status and more flexible traffic engineering for link protection can be realized. Finally, we 
design congestion aware backup path planning and selection algorithms taking into account 
the variability of network status so that the performance of the rerouting algorithms can be 
further improved. Through evaluations and simulations, it can be concluded that the method 
proposed in this paper can achieve better performance than the latest failure recovery methods. 

However, there are still some issues to be solved in implementation. For example, the 
source routing SDN proposed in this paper may introduce overhead to the packet header and 
have some scalable problems when applied in large scale network. Moreover, the sampling 
interval and the acquisition delay of network status may cause errors of the backup paths 
planning and selection algorithms.  

Our next step research will focus on solving the problems mentioned above and mainly 
includes following aspects: First, we will develop customized source routing SDN mechanism 
to minimize the overhead of packet header and eliminate the scalability issues; Second, we 
will further optimize the proposed mechanism and algorithms to minimize the impact of 
sampling interval and acquisition delay of network status; Third, we will further explore the 
application scenarios of proposed method to enhance its practicality. 
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