• Title/Summary/Keyword: Linearized model

Search Result 428, Processing Time 0.022 seconds

Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results (네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험)

  • JUN BONG-HUAN;LEE PAN-MOOK;LI JI-HONG;HONG SEOK-WON;LEE JIHONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.

Prediction of 305 Days Milk Production from Early Records in Dairy Cattle Using an Empirical Bayes Method

  • Pereira, J.A.C.;Suzuki, M.;Hagiya, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1511-1515
    • /
    • 2001
  • A prediction of 305 d milk production from early records using an empirical Bayes method (EBM) was performed. The EBM was compared with the best predicted estimation (BPE), test interval method (TIM), and the linearized Wood's model (LWM). Daily milk yields were obtained from 606 first lactation Japanese Holstein cows in three herds. From each file of 305 daily records, 10 random test day records with an interval of approximately one month were taken. The accuracies of these methods were compared using the absolute difference (AD) and the standard deviation (SD) of the differences between the actual and the estimated 305 d milk production. The results showed that in the early stage of the lactation, EBM was superior in obtaining the prediction with high accuracy. When all the herds were analyzed jointly, the AD during the first 5 test day records were on average 373, 590, 917 and 1,042 kg for EBM, BPE, TIM, and LWM, respectively. Corresponding SD for EBM, BPE, TIM, and LWM were on average 488, 733, 747 and 1,605 kg. When the herds were analyzed separately, the EBM predictions retained high accuracy. When more information on the actual lactation was added to the prediction, TIM and LWM gradually achieved better accuracies. Finally, in the last period of the lactation, the accuracy of both of the methods exceeded EBM and BPM. The AD for the last 2 samples analyzing all the herds jointly were on average 141, 142, 164, and 214 kg for LWM, TIM, EBM, and BPE, respectively. In the current practices of collecting monthly records, early prediction of future milk production may be more accurate using EBM. Alternatively, if enough information of the actual lactation is accumulated, TIM may obtain better accuracy in the latter stage of lactation.

Analysis on the Dynamic Characteristics of a DDV Actuation System of a FBW Aircraft (FBW 항공기의 DDV 구동장치에 대한 운동특성 해석)

  • Nam, Yun-Su;Park, Hae-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.74-80
    • /
    • 2006
  • This paper deals with the control and fault monitoring of a DDV hydraulic actuation system. A hydraulic servo system has a nonlinear dynamics of an orifice flow through a valve spool. A full nonlinear model for a DDV actuation system is driven, and linearized to a simple model which is convenient for a control loop and fault monitor design. A top level requirement on the performance and safety for the actuation system is introduced. A control system and fault monitoring structure which can meet these requirements are discussed. A simulation package for a DDV actuation system which has a triplex redundant structure is developed.

Simplified Dynamic Modeling of Small-Scaled Rotorcraft (축소형 회전익 항공기의 간략화된 동적 모델링)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.56-64
    • /
    • 2005
  • It is prerequisite that we have to fomulate the nonlinear mathematical modeling to design the guidance and control system of rotorcraft-based unmanned aerial vehicle using a small-scaled commercial helicopter. The small-scaled helicopters are very different from the full-scale helicopters in dynamic behavior such as high rotation speed and high frequency dynamic characteristics. In this paper, the formulation of the mathematical model of the small-scaled helicopter to minimize the complexity is presented by component and source build-up approach. It is linearized at the trim condition of hovering and forward flight and analyzed the flight modes. The results of this approach have general trends but a little difference. To verify this approach, it is necessary to compare this theoretical model with experimental results by system identification using flight test as a next research topic.

Current effects on global motions of a floating platform in waves

  • Shen, Meng;Liu, Yuming
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The purpose of this paper is to understand and model the slow current (~2 m/s) effects on the global response of a floating offshore platform in waves. A time-domain numerical simulation of full wave-current-body interaction by a quadratic boundary element method (QBEM) is applied to compute the hydrodynamic loads and motions of a floating body under the combined influence of waves and current. The study is performed in the context of linearized potential flow theory that is sufficient in understanding the leading-order current effect on the body motion. The numerical simulations are validated by quantitative comparisons of the hydrodynamic coefficients with the WAMIT prediction for a truncated vertical circular cylinder in the absence of current. It is found from the simulation results that the presence of current leads to a loss of symmetry in flow dynamics for a tension-leg platform (TLP) with symmetric geometry, resulting in the coupling of the heave motion with the surge and pitch motions. Moreover, the presence of current largely affects the wave excitation force and moment as well as the motion of the platform while it has a negligible influence on the added mass and damping coefficients. It is also found that the current effect is strongly correlated with the wavelength but not frequency of the wave field. The global motion of a floating body in the presence of a slow current at relatively small encounter wave frequencies can be satisfactorily approximated by the response of the body in the absence of current at the intrinsic frequency corresponding to the same wavelength as in the presence of current. This finding has a significant implication in the model test of global motions of offshore structures in ocean waves and currents.

Electronic Structures of Colossal Magnetoresistive (CMR) $Fe_{1-x}Cu_xCr_2S_4$Spinels (초거대자기저항(CMR) 현상을 보이는 Spinel $Fe_{1-x}Cu_xCr_2S_4$의 전자구조 연구)

  • 박민식;윤석주;민병일
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.111-117
    • /
    • 1998
  • Recent discovery of colossal magnetoresistance (CMR) phenomena in perovskite manganese oxides has evoked great interest for its physical peculiarity and the possible industrial application. Besides manganese oxides, CMR phenomena is also observed in $Tl_2Mn_2O_7$ with pyrochlore structure and in Cr-based chalcogenide with spinel structure. In this paper, we have studied electronic structures of Cr-based chalcogenide spindles $Fe_{1-x}Cu_xCr_2S_4$ at x=0.0, 0.5, 1.0 using the linearized muffin-tin orbital (LMTO) band method within the local density approximation (LDA). The characteristic resistivity for x=0.0, 0.5 could be explained qualitatively in terms of the half-metalic electronic structure and the Jahn-Teller effect. Especially, the half-metallic nature appearing in the metallic temperature regime is well descibed by the proposed conduction model for x=0.0, 0.5, 1.0. We have suggested, based on the conduction model, that the CMR phenomena observed in these compounds are closely correlated with the obtained half-metallic electronic structure.

  • PDF

Design of Rotating Moving-Magnet-Type VCM Actuator for Miniaturized Mobile Robot (소형 이동 로봇을 위한 회전형 보이스 코일 구동기 개발)

  • Shin, Bu Hyun;Lee, Seung-Yop;Lee, Kyung-Min;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1529-1534
    • /
    • 2013
  • A voice coil actuator with a rotating moving magnet has been developed for a miniaturized mobile robot. The actuator has simple structure comprising a magnet, a coil, and a yoke. Actuator performance is predicted using a linearized theoretical model, and dynamic performance based on the air-gap between the magnet and the coil is predicted using motor constant and restoring constant obtained through finite element simulations. The theoretical model was verified using a prototype with 60 Hz resonance and 80 Hz bandwidth. We found that an input of 1.5 V can make the actuator rotate by $20^{\circ}$ statically. The driving configuration of the proposed actuator can be simplified because of its implementation of open-loop control.

The Comparative Analysis of Numerical and Experimental Results for Prediction of Workpiece Temperature in the Commercial Reheating Furnace (상용급 재가열로에서 소재 온도 예측을 위한 해석과 실험 결과의 비교 분석)

  • Lee, Chunsik;Lee, Jae Yong;Ryu, BoHyun;Rhim, DongRyul
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.74-79
    • /
    • 2019
  • Specially designed test material was used for workpiece temperature measurement in the commercial reheating furnace and a linearized thermal model was applied for real time temperature prediction. The applied furnace is a walking beam type and specification of the workpiece is a STS302 which is 160mm in width, 160mm in height and 8100mm in length. Also six thermocouples were installed in width, height and length direction for temperature measurement. Ambient temperature in the furnace was raised to 1265 Celsius degrees and it took about 2.5 hours from loading to discharging of the workpiece. As a result of the experiment, temperature of the workpiece at discharge was 1257 Celsius degrees on the average in the range of 1256 to 1259 Celsius degrees, and predicted average temperature through the thermal model was 1251 Celsius degrees. Therefore, the deviation of the analysis and test results is about 6 degrees, which is within the range of 10 degrees required by the industry.

Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion

  • Zhang, Shuting;Ji, Yu;Ma, Chunhua
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.253-261
    • /
    • 2021
  • Polydimethylsiloxane (PDMS) is one of the most widely adopted silicon-based organic polymeric elastomers. Elastomeric nanostructures are normally required to accomplish an explicit mechanical role and correspondingly their mechanical properties are crucial to affect device and material performance. Despite its wide application, the mechanical properties of PDMS are yet fully understood. In particular, the time dependent mechanical response of PDMS has not been fully elucidated. Here, utilizing state-of-the-art PeakForce Quantitative Nanomechanical Mapping (PFQNM) together with Force Volume (FV) and Fast Force Volume (FFV), the elastic moduli of PDMS samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 Hz up to 2 kHz. Careful calibrations were done. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young's modulus was discovered with increasing acquisition frequency. It was measured 878 ± 274 kPa at 0.1 Hz and increased to 4586 ± 758 kPa at 2 kHz. The robust local probing of mechanical measurement as well as unprecedented high-resolution topography imaging open new avenues for quantitative nanomechanical mapping of soft polymers, and can be extended to soft biological systems.

Development of Optimization Model for Long-term Operation Planning of the Hydropower Reservoirs in Han River Basin (한강수계 발전용댐 장기 운영계획 수립을 위한 최적화 모형 구축)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.69-79
    • /
    • 2019
  • In Korea, more than 60% of the whole lands are mountainous area. Since many decades ago, hydroelectric power plants have been constructed and eco-friendly energy has been produced. Hydropower can cope with the rapidly changing energy supply and demand, and produce eco-friendly energy. However, when the reservoir is built, it is often inevitable to damage the environment due to construction of large structure. In this study, the optimal reservoir operation model was developed to maximize power generation by monthly operation for long-term operation planning. The dam operation model was developed using the linear programming which is widely used in the optimal resources allocation problems. And the reservoir operation model can establish monthly operation plan for 1 year. Linear programming requires both object function and constraints to be linear. However, since the power generation equation is nonlinear, it is linearized using the Taylor Expansion technique. The optimization results were compared with the 2009-2018 historical data of five hydropower reservoirs. As a result, the total optimal generation is about 10~37% higher than the historical generation.