• Title/Summary/Keyword: Linearity Error

Search Result 289, Processing Time 0.027 seconds

Error Analysis of Approximate Solution by Differential Transform Method with respect to Non-linearity of Duffing Equation (미분변환법을 이용해 구해진 Duffing Equation 근사해의 비선형성 증가에 따른 오차 분석)

  • Yang, Seong-Uk;Kim, Dong-Hun;Kim, Bong-Gyun;Yang, Jun-Mo;Lee, Sang-Cheol
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.20-24
    • /
    • 2015
  • 미분변환법은 미분방정식의 해를 구하기 위한 방법으로 다양한 분야에서 적용에 관한 연구를 수행 중이다. 항공우주분야의 동역학 모델링의 경우 미분방정식은 비선형성을 포함하게 되며 일반적으로 수치해석을 이용해 근사해를 구하게 된다. 본 논문에서는 미분변환법을 이용해 구해진 근사해의 오차 추이를 분석한 내용을 다루고 있다. 이를 위한 예제로써 duffing equation을 사용하였으며, duffing equation에 포함된 비선형성을 증가시킴에 따라 미분변환법을 이용해 구한 근사해와 수치해석을 이용해 구한 수치해를 비교하였다.

  • PDF

An Apparatus for Monitoring Real-time Uranium Concentration Using Fluorescence Intensity at Time Zero

  • Lee, Sang-Mock;Shin, Jang-Soo;Kang, Shin-Won
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • An apparatus for detecting remote real-time uranium concentration using an optrode was developed. An optrode to detect uranium fluorescence as remote real-time control was designed. Fluorescence intensity at time 2ero was derived by the fluorescence signal processing and the algorithm to exclude the quenching effect of various quenchers and temperature fluctuations. This apparatus employing the above deriving method and the optrode has an error range within 6% in spite of serious fluorescence lifetime changes due to the quenching effect and temperature fluctuations. The detection limit is 0.06 ppm and the linearity is excellent between 0.06 ppm and 2 ppm on the aqueous uranium solution.

  • PDF

Self-Compensation of PZT Errors in White Light Scanning Interferometry

  • Kang, Min-Gu;Lee, Sang-Yoon;Kim, Seong-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.35-40
    • /
    • 1999
  • One of main error sources in white light scanning interferometry is the inaccuracy of scanning mechanisms in that PZT(piezoelectric transducer) micro-actuators are preferably used. We propose a new calibration method that is capable of identifying actual scanning errors directly by analyzing the spectral distribution of sampled interferograms. This calibration provides an effective means of self-compensation for the non-linearity errors caused by PZT hysteresis, enhancing the measurement uncertainty to a level of 5 nanometers over an entire measuring range of 100 ${\mu}{\textrm}{m}$.

Low-Voltage Current-Sensing CMOS Interface Circuit for Piezo-Resistive Pressure Sensor

  • Thanachayanont, Apinunt;Sangtong, Suttisak
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • A new low-voltage CMOS interface circuit with digital output for piezo-resistive transducer is proposed. An input current sensing configuration is used to detect change in piezo-resistance due to applied pressure and to allow low-voltage circuit operation. A simple 1-bit first-order delta-sigma modulator is used to produce an output digital bitstream. The proposed interface circuit is realized in a 0.35 ${\mu}m$ CMOS technology and draws less than 200 ${\mu}A$ from a single 1.5 V power supply voltage. Simulation results show that the circuit can achieve an equivalent output resolution of 9.67 bits with less than 0.23% non-linearity error.

  • PDF

ULTRA LOW-POWER AND HIGH dB-LINEAR CMOS EXPONENTIAL VOLTAGE-MODE CIRCUIT

  • Duong Quoc-Hoang;Lee Sang-Gug
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.221-224
    • /
    • 2004
  • This paper proposed an ultra low-power CMOS exponential voltage-mode circuit using the Pseudo-exponential function for realizing the exponential characteristics. The proposed circuit provides high dB-linear output voltage range at low-voltage applications. In a $0.25\;\mu m$ CMOS process, the simulations show more than 35 dB output voltage range and 26 dB with the linearity error less than $\pm0.5\;dB.$ The average current consumption is less than 80 uA. The proposed circuit can be used for the design of an extremely low-power variable gain amplifier (VGA) and automatic gain control (AGC).

  • PDF

A sinusoidal tuned VCO using linear OTA's (선형 OTA를 이용한 사인파 동조형 전압-제어 발전기)

  • 박지만;정원섭
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.80-85
    • /
    • 1996
  • A sinusoidal tuned VCO based on linear OTA's has been designed for instrumentation and measurement applications. It consists of a noniverting amplifier, a hard limiter, and a current controlable LC-tuned circuit which is realized vy two linear OTA's and two grounded capacitors. A prototype circuit has been built with discrete components. The experimental results show that the proposed VCO has a linearity error of less than 6.5 percent and a temperature coefficient of less than 200ppm/$^{\circ}C$ over a bias current range form 5$\mu$A to 100 $\mu$A(or an oscillation frequency range form 775.5 Hz to 20.371 kHz). A total harmonic distortion of 0.6 percent was measured for a peak-to-peak amplitude of 5V.

  • PDF

Development of the Pin Type Load-cell Using Strain Gauge (Strain Gauge를 이용한 핀형 로드셀 개발)

  • Lee, Dong-Wook;Park, Min-Hyuk;Lee, Gye-Gaong;Kim, In-Hwan;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.75-82
    • /
    • 2014
  • A pin-type load-cell which uses shear-type strain gauges was developed to measure the tension of a wire in a winch. A finite element analysis was performed to determine the locations of the strain gauges. All of the shear-type strain gauges were attached onto parts that undergo regularly shear stress distributions. A Wheatstone bridge circuit was used to connect each of the gauges and to measure the strains. Linearity within the 5% error range was noted when testing the pin-type load-cell.

Pointing position detection of capacitive touch screen panel using phase-difference method (위상차 방식을 사용한 용량방식 터치 스크린 패널의 접촉 위치 검출)

  • Jo, Yeong-Cheol;Jang, Rae-Hyeok;Gwon, Uk-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.406-412
    • /
    • 1998
  • This paper describes a contact position detection method of a capacitive touch screen panel. The proposed method is composed of a circuited compensating algorithm generating an output signal having phase difference to an input signal associated with contact position, converts both input and output signals into digital waveform (5V logic), and calculates the phase difference. Finally, position information with the phase difference is obtained by using a low-cost microprocessor, which is convenient to compensate non-linearity error. The proposed method, that computes phase difference directly, has advantages in feasibility and cost because it minimizes the use of analog devices; rather, it utilizes, cost effective digital circuit. Analytical results are also given.

  • PDF

A Resistance Deviation-To-Time Interval Converter Based On Dual-Slope Integration

  • Shang, Zhi-Heng;Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2015
  • A resistance deviation-to-time interval converter based on dual-slope integration using second generation current conveyors (CCIIs) is designed for connecting resistive bridge sensors with a digital system. It consists of a differential integrator using CCIIs, a voltage comparator, and a digital control logic for controlling four analog switches. Experimental results exhibit that a conversion sensitivity amounts to $15.56{\mu}s/{\Omega}$ over the resistance deviation range of $0-200{\Omega}$ and its linearity error is less than ${\pm}0.02%$. Its temperature stability is less than $220ppm/^{\circ}C$ in the temperature range of $-25-85^{\circ}C$. Power dissipation of the converter is 60.2 mW.

A Differential Current-to-Time Interval Converter Using Current-Tunable Schmitt Triggers

  • Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.375-380
    • /
    • 2017
  • A differential current-to-time interval converter is presented for current mode sensors. It consists of a ramp voltage generator, a current mode sensor, a reference current source, two current-tunable Schmitt triggers, a one-shot multivibrator, and two logic gates. The design principle is to apply a ramp voltage to each input of the two current-tunable Schmitt triggers whose threshold voltages are proportional to the drain current values of the current mode sensors. A proposed circuit converts a current change in the ISFET biosensor into its equivalent pulse width change. A prototype circuit built using TSMC 0.18 nm CMOS process exhibit a conversion sensitivity amounting to $726.9{\mu}s/pH$ over pH variation range of 2-12 and a linearity error less than ${\pm}0.05%$.