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One of main error sources in white light scanning interferometry is the inaccuracy of scanning
mechanisms in that PZT (piezoelectric transducer) micro-actuators are preferably used. We propose
a new calibration method that is capable of identifying actual scanning errors directly by analyzing
the spectral distribution of sampled interferograms. This calibration provides an effective means of
self-compensation for the non-linearity errors caused by PZT hysteresis, enhancing the measurement
uncertainty to a level of 5 nanometers over an entire measuring range of 100 ym.

I. INTRODUCTION

White light scanning interferometry produces short
coherence interferograms whose fringe visibility is nar-
rowly localized, so that the optical path difference
between the test and reference beams can be pre-
cisely scaled without 27-ambiguity. During the last
two decades much attention has been paid to three-
dimensional surface mapping using white light scan-
ning interferometry. As a result, quite a few sophisti-
cated techniques have been well established to achieve
extremely fine measuring resolutions typically in the
nanometer regime [1]. However, the measuring un-
certainty is significantly affected by non-linear errors
caused by PZT hysteresis, and it is usually far worse
than the resolution in proportion with required mea-
suring range. One fortunate fact is that PZT hystere-
sis is so systematic that it can be well predicted if the
operating input condition is known [2}. It is conse-
quently common in practice to drive PZT actuators
following a predefined upward path in that the input
voltage is increased from the zero state. The output
displacement in this case becomes repeatable and its
systematic non-linear behavior with the input voltage
can be well predicted and subsequently compensated
using pre-calibrated step artifacts [3).

One practical problem with using a step artifact is
the pre-calibration uncertainty that is usually in the
range of a few nanometers. For accurate compensa-
tion, the step height of the artifact needs to be made
as small as possible so that the detailed non-linear re-
sponse of the PZT ceramics to the input voltage is
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characterized step by step over the entire operating
range. In doing that, however, the pre-calibration er-
ror tends to accumulate as the compensation proceeds
and reaches to a significant level in the end. Now,
to cope with the problem, this paper proposes a new
calibration method in which no accumulation of pre-
calibration error occurs. This method basically allows
a self-calibration in that actual scanning intervals are
identified directly from sampled interferograms. The
key idea is that the spectral distribution of the white
light involved in scanning interferometry can be read-
ily computed by transforming interferograms into the
spectral domain [4]. Then the central wavenumber is
identified as the centroid of the spectral distribution
and, directly related with the scanning step intervals
actually used in measurement. This technique needs
the pre-calibrated artifact only once when the physical
dimension of the central wavenumber is determined. In
addition, the step height of the artifact can be made
large enough to be about the size of the whole scan-
ning range, so that averaging effects minimizing the
uncertainty in deciding the central wavenumber can
be obtained.

II. CENTRAL WAVENUMBER

White light scanning interferometry for three-
dimensional surface mapping can be performed with
a variety of optical setups such as Michelson, Mirau,
and Linnik interferometers. A Mirau type configura-
tion shown in Fig. 1 is taken here in its simplest form
to explain working principles of white light scanning
interferometry. Interferograms are sampled using a
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FIG. 1. Optical configuration of the Mirau interferome-
ter.

photodetector array while moving the target surface
along the z direction using a PZT actuator. At a point
P(z,y) on the surface whose height is h(z, y), its scan-
ning interferogram may be considered as the incoherent
superposition of individual scanning interferograms of
monochromatic waves such as [5]

Hd:Lrh/FwﬁmDMh—ﬂ+aMk (1)

where I is the mean intensity, £ = 2Z, and F(k) rep-

resents the spectral distribution of white light involved
in interference. The phase shift of light occuring upon
reflection from the surface is called a, which is regarded
here as a constant for simplicity of analysis. The re-
sult of performing the integral operation of Eq. (1)
depends upon the detailed profile of F(k), and it may
be approximated as {1]

I(z) = Iy + a(h — 2z) cos (2k.(h — 2) + @) 2)

where k. denotes the central wavenumber, while a(h —
z) is referred to as the visibility envelop function. Fig.
2 shows a typical interferogram that is obtained from
a Tungsten-Halogen lamp, whose temporal coherence
length measures about 4 pm. Interference fringes are
narrowly localized in the spatial domain due to short
coherence, being wrapped by the visibility envelop
function a(h—z). The analytical expression of a(h - 2)
usually turns out to be a Gaussian or sinc type function
for most practically available light sources [5].
Whatever the actual shape of a(h — z) is, it is noted
that the function a(h — z) always holds the property of

a@:/FmM. (3)
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FIG. 2. A typical interferogram from tungsten-halogen
lamps (N.A. = 0.4).

This can be easily verified by substituting z = h into
Egs. (1) and (2). In addition, differentiating Eqgs. (1)
and (2), and substituting z = h again give the inter-
mediate result of

da(h — z)
0z
—2k.a(0)sina . 4)

—2/kF(k) sina dk = [z=h COS ¥

In the above, the first differential term in the right
hand side is always zero since the function a(h — z) is
supposed to be at its maximum when z = h. Conse-
quently, combining Eq. (3)with Eq. (4) yields a useful
relationship of

k. = J kF(k)dk . (5)
J F(k)dk

This result implies that the central wavenumber k. de-

fined in Eq. (2) in fact corresponds to the centroid

abscissa of the spectral distribution F'(k).

The spectral distribution F(k) as defined in Eq.
(1) demands some deliberation to precisely understand
how it should be determined. It is apparent that the
primary contribution to F(k) is the emitted spectrum
of the light source in use. In addition, since it is to be
attributed to the interference fringes finally sampled,
F(k) is supposed to be influenced by the reflectance of
the test surface and also by the optical transmittance
of the lenses involved in interferometry and the spec-
tral sensitivity of the photodetector array being used.
Therefore F(k) is not faithfully indicated solely by the
spectral distribution of the light source itself that can
be measured with a well-calibrated spectrometer. In
other words, F(k) has to be identified directly from
sampled interferograms. Eq. (1) notes that when the
measured intensity I, is transformed into the spectral
domain, the resulting spectral amplitude straightfor-
wardly stands for F(k) [4]. Fig. 3 shows an exemplary
result of F'(k), which was computed by Fourier trans-
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FIG. 3. The spectral distribution of a tungsten-halogen
lamp.

forming the interferogram obtained from a tungsten-
halogen lamp. Accordingly, once the distribution of
F(k) is computed, the central wavenumber k. can then
be determined as the centroid abscissa following Eq.
(5), as illustrated in the figure.

III. CALIBRATION

For calibration of PZT scanning errors, it becomes
necessary to find the relationship between the com-
puted central wavenumber k. and the step interval Az
that is to be used in actual scanning. Discrete Fourier
transforming is adopted in determining F(k), so let’s
assume that a whole interferogram is sampled by col-
lecting a total of M discrete intensity data points while
being successively scanned by the step interval Az.
Then the z-coordinate is expressed in discrete form as
2; = zo+1i-Az, wherei =0,1,2,..., M —1. And the dis-
crete Fourier transform of I(z) of Eq. (1) is performed
as

37

foru:O,l,Z,...,%lI— . (6)

where u indicates the index number of spatial fre-
quency. The frequency interval of the discretely trans-
formed I(u) is determined as Av = 1/(MAz), while
the spatial frequency is given as v = u/(MAz). Now,
using the relationship of Eq. (5), the central frequency
v, can be readily decided as v, = u./(MAz), where
u. specifically corresponds to the centroid abscissa of
I{u). If the Mirau interferometer concerned is of reflec-
tion type, the optical path becomes twice the scanning
distance, i.e., 2k. = 2xv, = (2r/MAz)u,. Accord-
ingly, as illustrated in Fig. 4, the scanning step inter-
val is finally related with the central wavenumber k.
such as

(7)

Az =K u,

where & now becomes a constant expressed as &
m/Mk,. This result shows that the scanning step in-
terval Az can be identified from the centroid abscissa
u. of the Fourier transformed data of I(z), provided
the central wavenumber k. is known.

The relationship of Eq. (7) can be used for com-
pensation of PZT errors with the calibration scheme
configured in Fig. 5. The PZT actuator under cali-
bration is to move a Mirau type microscope objective
in the scanning range of 0 to 100 um. The voltage
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FIG. 4. Relationship between the central wavenumber and centroid abscissa in the spectral domain.
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input to the actuator varies from 0 to 100 V with a
mean sensitivity of 1.0 yum/V. A flat mirror is placed
on a specimen table, whose vertical position is raised
in sequence using a stepping motor with a predeter-
mined increment of 5 um typically. At each verti-
cal position of the specimen table, scanning interfer-
ograms are sampled against the flat mirror by driving
the PZT actuator with a scanning step interval of 80
nm. This calibration scheme provides exactly alike in-
terferometric conditions regardless of vertical positions
of the specimen table. An identical spectral condition
is consequently maintained in all the measurements of
scanning interferograms, so that the central wavenum-
ber k. remains unchanged.

Fig. 6 shows a series of interferograms, which were
actually sampled with an incremental interval of 10
pm over the whole PZT scanning range of 100 pm.
It is not surprising that the sampled interferograms
are unlike with different fringe periods, indicating ac-
tual scanning step intervals are not the same due to
PZT hysteresis. Accordingly; the centroid abscissa u.
of Eq. (7) varies with the input voltage, so it may be
expressed as

N
u(V) =Y eaV" (8)
n=0

where ¢, represents the polynomial coefficients to be
fitted. Numerical values of u, are computed using Eq.
(5) every 5 um along the whole PZT range. Then us-
ing least squares technique the coeflicients ¢, are de-
termined so that a complete description of u. is con-
structed in terms of the input voltage V in a polyno-
mial form.

Now, in order to identify the constant x that con-
tains the central wavenumber k., a new variable U (V)
is defined such as
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FIG. 6. Interferograms at different PZT scanning posi-
tions.

which is referred to as the accumulated centroid index.
Once the polynomial of u.(V) is obtained, U.(V) can
be readily determined using the coefficients ¢,,. Let us
assume that a known step height H is measured, then
it can be expressed as

V2 V2
H= Az(V)dV = n/ u (V)dV
V1 vl

= k[Uc(V2) — Uc(W1)] (10)

in which V3 and V2 denote the initial and final input
voltages where the bottom and upper surfaces of the
step height are detected, respectively. Since the accu-
mulated centroid index has been previously obtained as
a point function in terms of input voltage V, the con-
stant k is attained as Kk = H/[U.(Va) — U.(V1)]. The
accurate value of H should be known through a precise
pre-calibration means such as a standard laser interfer-
ometer used for gauge blocks calibration, In perform-
ing the pre-calibration, it is important to note that
the step height H should be taken as large as possi-
ble to be about the size of the whole scanning range.
The reason is that some calibration error is inevitable
in determining H, even though it is usually limited
to a few nanometers. Thus the uncertainty in H is
averaged in the computed « through a large value of
[UC(V2) - Uc(Vl)]

Fig. 7 shows the experimental result in which the
values of scanning step intervals were computed with
the calibrated « using the relationship of Eq. (7). In
fact, scanning step intervals were commanded to be 80
nm, but their induced values were in the range from
60 to 85 nm. The solid curve exhibited in the figure
represents the fitted result in which up to the ninth
polynomials were used, i.e., N = 9. Now Fig. 8 dis-
plays the full path of the PZT actuator, which was
obtained as

v
:./(V):/o Az(V)dV
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FIG. 7. Measured step intervals.
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FIG. 8. Measured PZT response curve.
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FIG. 9. Measurement results of an identical step height.

\ %
= n/ we(V)AV = & - Ua(V) . (11)
0

The experimental result clearly shows the PZT hys-
teresis effects causing measurement inaccuracy.
Finally, a standard step height of 84 nm was repeat-
edly measured at various positions over the whole op-
erating range of the PZT actuator. As shown in Fig.
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9, when no calibration was made, the measured height
values vary from 75 to 97 nm depending upon the op-
erating position of the actuator. On the other hand,
when calibration was done, the measured height values
have a small variation of less than 4 nm over the en-
tire operating range. In addition, the maximum stan-
dard deviation of the measured heights is found within
2 nanometers, which were verified through 30 consec-
utive measurements at every calibration position. In
this test, a white light phase-measuring algorithm that
is performed in three consecutive steps was used. As il-
lustrated in Fig. 10, in the first step of the algorithm,
the envelope function is extracted using the Hilbert
transform (6] on the 64 intensity data point sampled
from a scanning interferogram. Then, in the second
step, the intensity data are simultaneously offset to
have a mean of zero, and divided by the computed en-
velope function to obtain a purely sinusoidal intensity
pattern. In the final third step, a group of 15 inten-
sity data points is selected around the envelope peak
point, and the true fringe peak point is precisely de-
termined relying upon a phase-shifting technique that
has well been established in coherent laser interferom-
etry. Once the compensation of PZT scanning errors
has been done, the actual scanning interval of the cho-
sen 15 data points is not found to be accurately either
n/2 or /3 even though intended as such. Therefore, a
least-squares phase-measuring algorithm that can well
work with an unequally-spaced intensity data set was
used to find the relative phase of the true fringe peak

[7]-

IV. CONCLUSION

In this investigation, a self-compensation method of
PZT errors in white light scanning interferometry has
been presented. The method identifies actual scanning
errors directly by analyzing the spectral distribution
of sampled interferograms. This technique needs the
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FIG. 10. The white light phase-measuring algorithm for peak detection.
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pre-calibrated artifact only once when the physical di-
mension of the central wavenumber is determined. In
addition, the step height of the artifact can be made
large enough to be about the size of the whole scan-
ning range, so that averaging effects minimizing the
uncertainty in deciding the central wavenumber can
be obtained. Experimental results prove that a PZT
scanning error of about 25 nm can be reduced to a level
of 4 nm with a repeatability of less than 2 nm.
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