• Title/Summary/Keyword: Linear system of equations

Search Result 844, Processing Time 0.029 seconds

Experimental Study on Tip Clearance Effects for Performance Characteristics of Ducted Fan

  • Raza, Iliyas;Choi, Hyun-Min;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.395-398
    • /
    • 2009
  • Currently, a new generation of ducted fan UAVs (Unmanned Aerial Vehicles) is under development for a wide range of inspection, investigation and combat missions as well as for a variety of civil roles like traffic monitoring, meteorological studies, hazard mitigation etc. The current study presents extensive results obtained experimentally in order to investigate the tip clearance effects on performance characteristics of a ducted fan for small UAV systems. Three ducted fans having different tip clearance gap and with same rotor size were examined under three different yawed conditions of calibrated slanted hot-wire probe. Three dimensional velocity flow fields were measured from hub to tip at outlet of the ducted fan. The analysis of data were done by PLEAT (Phase locked Ensemble Averaging Technique) and three non-linear differential equations were solved simultaneously by using Newton -Rhapson numerical method. Flow field characteristics such as tip vortex and secondary flow were confirmed through axial, radial and tangential velocity contour plots. At the same time, the effects of tip clearance on axial thrust and input power were also investigated by using wind tunnel measurement system. For enhancing the performance of ducted fan, tip clearance level should be as small as possible.

  • PDF

Numerical Optimization of A Multi-Blades Centrifugal Fan For High-Efficiency Design (원심다익송풍기의 고효율 설계를 위한 수치최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.385-390
    • /
    • 2003
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Wavier-Stokes equations with standard $k-{\varepsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

  • PDF

AN EFFICIENT ALGORITHM FOR INCOMPRESSIBLE FREE SURFACE FLOW ON CARTESIAN MESHES (직교격자상에서 효율적인 비압축성 자유표면유동 해법)

  • Go, G.S.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.20-28
    • /
    • 2014
  • An efficient solution algorithm for simulating free surface problem is presented. Navier-Stokes equations for variable density incompressible flow are employed as the governing equation on Cartesian meshes. In order to describe the free surface motion efficiently, VOF(Volume Of Fluid) method utilizing THINC(Tangent of Hyperbola for Interface Capturing) scheme is employed. The most time-consuming part of the current free surface flow simulations is the solution step of the linear system, derived by the pressure Poisson equation. To solve a pressure Poisson equation efficiently, the PCG(Preconditioned Conjugate Gradient) method is utilized. This study showed that the proper application of the preconditioner is the key for the efficient solution of the free surface flow when its pressure Poisson equation is solved by the CG method. To demonstrate the efficiency of the current approach, we compared the convergence histories of different algorithms for solving the pressure Poisson equation.

Continuous Blood Pressure Prediction Using PTT During Exercise (PTT를 이용한 자전거 운동 중 지속적인 혈압의 예측)

  • Kim, Chul-Seung;Moon, Ki-Wook;Kwon, Jung-Hoon;Eom, Gwang-Moon
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.370-375
    • /
    • 2006
  • The purpose of this work is to predict the systolic blood pressure (BP) during exercise from pulse transit time (PTT) for warning of possible danger. PTT was calculated as the time between R-peak of ECG and the peak of differential photoplethysmograph (PPG). For the PTT-BP model, we used regress equations from previous studies and 3 kinds of new models combining linear and nonlinear regress equation. The model parameters were estimated with the data measured under low to middle intensity exercise, and then was tested with the data measured under high intensity exercise. Predicted BP values after high intensity exercise were compared with those measured by cuff-type sphygmomanometer. The results showed that the error between measured and predicted values were acceptable for the monitoring BP. We tested PTT-BP models 1 month after the identification without further calibration. Models could predict the BP and the errors between measured and predicted BP were about 5mmHg. The suggested system is expected to be helpful in recognizing any danger during exercise.

Cascaded Multi-Level Inverter Based IPT Systems for High Power Applications

  • Li, Yong;Mai, Ruikun;Yang, Mingkai;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1508-1516
    • /
    • 2015
  • A single phase H-bridge inverter is employed in conventional Inductive Power Transfer (IPT) systems as the primary side power supply. These systems may not be suitable for some high power applications, due to the constraints of the power electronic devices and the cost. A high-frequency cascaded multi-level inverter employed in IPT systems, which is suitable for high power applications, is presented in this paper. The Phase Shift Pulse Width Modulation (PS-PWM) method is proposed to realize power regulation and selective harmonic elimination. Explicit solutions against phase shift angle and pulse width are given according to the constraints of the selective harmonic elimination equation and the required voltage to avoid solving non-linear transcendental equations. The validity of the proposed control approach is verified by the experimental results obtained with a 2kW prototype system. This approach is expected to be useful for high power IPT applications, and the output power of each H-bridge unit is identical by the proposed approach.

Study on the Design, Manufacture, and Pressure Test of a Pressure Vessel Model (내압용기 모형의 설계, 제작 및 압력시험에 관한 연구)

  • Joung, Tae-Hwan;Lee, Jae-Hwan;Lee, Chong-Moo;Hykudome, Tadahiro;Sammut, Karl;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.101-106
    • /
    • 2007
  • In this paper, the authors demonstrate a new idea to take the place of the real pressure vessel test, which should be carried out in a high pressure experiment unit before the real sea trial test. The idea is to make a pressure vessel model as a replica of the real pressure vessel test, which can reduce the cost of making a pressure vessel and large pressure experiment unit. The pressure vessel model was designedbased on linear-elastic, buckling equations and Finite Element Analysis. The manufactured pressure vessel model was investigated and monitored while the pressure test was being conducted. After the test, the result and the validity of the pressure vessel model as a replica of the real pressure vessel test was studied.

An Improved Degenerated Shell Element for Analysis of Laminated Composite Structures (복합적층구조 해석을 위한 개선된 쉘요소)

  • Choi, Chang Koon;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.1-10
    • /
    • 1991
  • The paper is concerned with the analysis of laminated composite shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements. The resulting non-linear equilibrium equations are solved by the Newton-Raphson method. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

A Study on the Motion of a Single Point Moored Ship in Irregular Waves (불규칙파중 1점계류 선바의 거동해석에 관한 연구)

  • Lee, Seung-Keon;Jo, Hyo-Jae;Kang, Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • The maneuvering equations of motion are derived to express the motion of a ship. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The linear wave forces whose periods are equal to those of incident waves and the nonlinear wave forces that make long period drift forces are computed for the simulation. The consideration of irregular waves and nonlinear wave force effects on the slew motion are carried on the analyzing the motion of ship in the regular and irregular waves.

Nonlinear Wave Forces on an Offshore Wind Turbine Foundation in Shallow Waters

  • Choi, Sung-Jin;Lee, Kwang-Ho;Hong, Keyyoung;Shin, Seong-Ho;Gudmestad, O.T.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • In this study, a 3D numerical model was used to predict nonlinear wave forces on a cylindrical pile installed in a shallow water region. The model was based on solving the viscous and incompressible Navier-Stokes equations for a two-phase flow (water and air) model and the volume of fluid method for treating the free surface of water. A new application was developed based on the cut-cell method to allow easy installation of complicated obstacles (e.g., bottom geometry and cylindrical pile) in a computational domain. Free-surface elevation, water particle velocities, and inline wave forces were calculated, and the results show good agreement with experimental data obtained by the Danish Hydraulic Institute. The simulation results revealed that the proposed model can, without the use of empirical formulas (i.e., Morison equation) and additional wave analysis models, reliably predict non-linear wave forces on an offshore wind turbine foundation installed in a shallow water region.

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.