• Title/Summary/Keyword: Linear search algorithm

Search Result 198, Processing Time 0.025 seconds

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

A General Tool Surface Contact Search and its Application to 3-D Deep drawing Process (일반적인 금형면에서의 접촉탐색과 3차원 디프드로잉 성형에의 응용)

  • 서의권;심현보
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.416-424
    • /
    • 1997
  • In the present study, a contact search and check algorithm for general tool surface described by triangular FE patch is proposed. To improve numerical stability, SEAM element using the linear Coons interpolation has been used. To check the proposed algorithm, both clover cup and L-shape cup deep drawing processes are calculated. The computed results shows that the proposed contact algorithm can be successfully applied for sheet metal forming processes with general shaped tools.

  • PDF

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

The Signal Acquisition Algorithm for Ultra Wide-band Communication Systems (UWB 통신시스템에서 동기 획득 알고리즘)

  • Park, Dae-Heon;Kang, Beom-Jin;Park, Jang-Woo;Cho, Sung-Eon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.146-153
    • /
    • 2008
  • Due to the extremely short pulse in the Ultra-Wideband (UWB) technology, the accurate synchronization acquisition method is very important for both high data-rate WPAN and low data-rate WPAN. In this paper, we propose the synchronization acquisition algorithm based on two-step signal search method to acquire the synchronization in the UWB multi-path channel. At the first step, the search window is divided by two and the window that has higher power is chosen as a next search window. This operation is repeated until the measure power of the search window is smaller than the threshold value. At the second step, we employ Linear Search algorithm to the search window obtained at the first step for fine search. The proposed algorithm is proved that the synchronization acquisition is faster than the parallel search algorithm and it shows good performance in environment of the SNR extreme changes by the simulation.

  • PDF

Performance Analysis of UMB Signal Acquisition Algorithms According to Frame Interval and Bin Spacing in indoor Wireless Channels (실내 무선 환경에서 프레임 및 탐색 단위 구간에 따른 UWB 신호 동기 획득 알고리즘의 성능 분석)

  • Oh jong ok;Yang Suck chel;An Yo Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1623-1632
    • /
    • 2004
  • In this paper, we analyze the performance of linear search and bit reversal search algorithms based on the single-dwell serial search for rapid UWB (Ultra Wide Band) signal acquisition in typical indoor wireless channel environments. Simulation results according to bin spacing and frame interval in IEEE 802.15 Task Group 3a UWB indoor wireless channels show that bit reversal search algorithm achieves much smaller normalized mean acquisition time than linear search algorithm. In particular, it is found that the normalized mean acquisition time of the bit reversal search according to the range of searching termination interval closely matches the ideal case. In addition, we observe that the acquisition performance of bit reversal search algorithm becomes much better as bin spacing gets finer.

Identification of Continuous System from Step Response using HS Optimization Algorithm (HS 최적화 알고리즘을 이용한 계단응답과 연속시스템 인식)

  • Lee, Tae-bong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.292-297
    • /
    • 2016
  • The first-order plus dead time(FOPDT) and second-order plus dead time(SOPDT), which describes a linear monotonic process quite well in most chemical and industrial processes and is often sufficient for PID and IMC controller tuning. This paper presents an application of heuristic harmony search(HS) optimization algorithm to the identification of linear continuous time-delay systems from step response. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. The effectiveness of the proposed identification method has been demonstrated through a number of simulation examples.

Symbiotic organisms search algorithm based solution to optimize both real power loss and voltage stability limit of an electrical energy system

  • Pagidi, Balachennaiah;Munagala, Suryakalavathi;Palukuru, Nagendra
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.255-274
    • /
    • 2016
  • This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.

ADAPTATION OF THE MINORANT FUNCTION FOR LINEAR PROGRAMMING

  • Leulmi, S.;Leulmi, A.
    • East Asian mathematical journal
    • /
    • v.35 no.5
    • /
    • pp.597-612
    • /
    • 2019
  • In this study, we propose a new logarithmic barrier approach to solve linear programming problem using the projective method of Karmarkar. We are interested in computation of the direction by Newton's method and of the step-size using minorant functions instead of line search methods in order to reduce the computation cost. Our new approach is even more beneficial than classical line search methods. We reinforce our purpose by many interesting numerical simulations proved the effectiveness of the algorithm developed in this work.

Improvement of Convergence Rate by Line Search Algorithm in Nonlinear Finite Element Method (비선형 유한요소법에서 선탐색 알고리즘의 적용에 의한 수렴속도의 개선)

  • Koo, Sang-Wan;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1281-1286
    • /
    • 2003
  • A line search algorithm to increase a convergence in Newton's method is developed and applied to nonlinear finite element analysis. The algorithm is based on the slack line search theory which is an efficient algorithm to determine initial acceleration coefficient, variable backtracking algorithm proposed by some researchers, and convergence criterion based on residual norm. Also, it is capable of avoiding exceptional diverging conditions. Developed program is tested in metal forming simulation such as forging and ring rolling. Numerical result shows the validity of the algorithm for a highly nonlinear system .

Identification of First-order Plus Dead Time Model from Step Response Using HS Algorithm (HS 알고리즘을 이용한 계단응답으로부터 FOPDT 모델 인식)

  • Lee, Tae-Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.636-642
    • /
    • 2015
  • This paper presents an application of heuristic harmony search (HS) optimization algorithm for the identification of linear continuous time-delay system from step response. Identification model is first-order plus dead time (FOPDT), which describes a linear monotonic process quite well in most chemical processes and HAVC process and is often sufficient for PID controller tuning. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. The effectiveness of the identification method has been demonstrated through a number of simulation examples.