• Title/Summary/Keyword: Linear parameter varying system

Search Result 81, Processing Time 0.028 seconds

A Study on State Analysis of Heat Exchange between Counter-Flow Fluid via Fast Walsh Transform (고속 월쉬 변환을 이용한 이동 유체간 열교환 상태 해석에 관한 연구)

  • Kim, Tae-Hoon;Lee, Seung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.73-81
    • /
    • 2001
  • This study uses the distributed parameter systems resented by the spatial discretization technique. In this paper, the distributed parameter systems are converted into lumped parameter systems, End fast Walsh transform and the Picard's iteration method are allied to analysis the state of the systems. This thesis presents a new algorithm which usefully exercises the optimal contro1 in the distributed parameter systems. In exercising the optimal control of the distributed parameter systems, the excellent consequences are found without using the existing decentralized contro1 or hierarchical control method. This study can be applied to the linear time-varying systems and the non-linear systems. Farther researches are required to solve the problems of convergence in case of the numerous applicable intervals. The simulation proves the effectiveness of the proposed algorithm.

  • PDF

State Feedback Stabilization of Network Based Control Systems with Time-varying Delay (시변시간지연을 가지는 네트워크 기반 시스템의 상태궤환 안정화)

  • Jung Eui-Heon;Shu Young-Su;Lee Hong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.741-746
    • /
    • 2004
  • When investigating a control problem for network based control systems, the main issue is network-induced delay. This delay can degrade the performance of control systems designed without considering the delay and even destabilize the system. In this paper, we consider the stabilization of network based control systems, where there is bounded time-varying delay. This delay is treated like parameter variation of a discrete time system. The state feedback controller design is formulated as linear matrix inequality. Finally, we show that the stability of control systems designed with considering the delay is superior to that is not so.

State set estimation based MPC for LPV systems with input constraint

  • Jeong, Seung-Cheol;Kim, Sung-Hyun;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.530-535
    • /
    • 2004
  • This paper considers a state set estimation (SSE) based model predictive control (MPC) for linear parameter- varying (LPV) systems with input constraint. We estimate, at each time instant, a feasible set of all states which are consistent with system model, measurements and a priori information, rather than the state itself. By combining a state-feedback MPC and an SSE, we design an SSE-based MPC algorithm that stabilizes the closed-loop system. The proposed algorithm is solved by semi-de�nite program involving linear matrix inequalities. A numerical example is included to illustrate the performance of the proposed algorithm.

  • PDF

Enhancement of Roll Stability by Speed-Adaptive Robust Control (속도감은 강건제어에 의한 롤 운동 특성개선)

  • Kim, Hyo-Jun;Park, Yeong-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.167-175
    • /
    • 2001
  • This paper presents design of active roll controller of a vehicle and experimental study using the electric actuating roll control system. Firstly, parameter sensitivity analysis is performed based on 3DOF linear vehicle model. The controller is designed in the frame work of gain-scheduled H$\infty$ control scheme considering the varying parameters induced by laden and running vehicle condition. In order to investigate a feasibility of an active control system, experimental work is performed using hardware-in-the -loop setup which has been constructed by the devised electric actuating system and the full vehicle model with tire characteristics. The performance is evaluated by experiment using hardware-in-the -loop simulation under the conditions of some steer maneuvers and parameter variations.

  • PDF

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

Asymptotic Behaviro of Adaptive Systems: Convergence Analysis Without the Barbalat's Lemma

  • Hong, Keum-Shik;Hong, Yong-do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.277-282
    • /
    • 1994
  • Convergence of the state error e to zero in adaptive systems is shown using the uniqueness of solutions and the existence of a Lyapunov function in which the adaptation laws are constructed. Results in the paper are general, and therefore applicable to any adaptive control of a linear/nonlinear, time-varying or distributed-parameter system. Since the approach taken in the paper does not require the boundedness of the derivative of the state error e for all t .geq. 0, it is particularly useful in the adaptive control of infinite dimensional systems.

  • PDF

Nonlinear System Parameter Identification Using Finite Element Model (유한요소모델을 이용한 비선형 시스템의 매개변수 규명)

  • Kim, Won-Jin;Lee, Bu-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1593-1600
    • /
    • 2000
  • A method based on frequency domain approaches is presented for the nonlinear parameters identification of structure having nonlinear joints. The finite element model of linear substructure is us ed to calculating its frequency response functions needed in parameter identification process. This method is easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of finite element model. Since this method is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude but also selecting excitation frequencies. The validity of this method is tested numerically and experimentally with a cantilever beam having the nonlinear element. It was verified through examples that the method is useful to identify the nonlinear parameters of a structure having arbitary nonlinear boundaries.

Waypoint Tracking of Large Diameter Unmanned Underwater Vehicles with X-stern Configuration (X-stern 배열을 가진 대형급 무인잠수정의 경로점 추적)

  • Kim, Do Wan;Kim, Moon Hwan;Park, Ho-Gyu;Kim, Tae-Yeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.387-393
    • /
    • 2017
  • This paper focuses on a horizontal waypoint tracking and a speed control of large diameter unmanned underwater vehicles (LDUUVs) with X-stern configuration plane. The concerned design problem is converted into an asymptotic stabilization of the error dynamics with respect to the desired yaw angle and surge speed. It is proved that the error dynamics under the proposed control scheme based on the linear control and the feedback linearization can be considered as a cascade system; the cascade system is asymptotically stable if its nominal systems are so. This stability connection enables to separately deal with the waypoint tracking problem and the speed control one. By using the sector nonlinearity, the nominal system with nonlinearities is modeled as a polytopic linear parameter varying (LPV) system with parametric uncertainties. Then, sufficient linear matrix inequality (LMI) conditions for its asymptotic stabilizability are derived in the sense of Lyapunov stability criterion. An example is given to show the validity of the proposed methodology.

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

Study of the high pressure hose assemblies by accelerated life test (고압호스 조립체의 가속수명시험에 관한 연구)

  • Lee, Gi Chun;Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.886-892
    • /
    • 2013
  • Hydraulic hose assemblies are used as piping components for construction machinery, automobile, aircraft, industrial machinery, machine tools, and machinery for ships. Then the reliability of hose assemblies is important because total hydraulic system, which used to deliver the fluid power ($P^*Q$) needed to flexibility in the piping system, is not operated if the hose assembly failed in the system. The data of the accelerated life test estimated through the shape parameter(${\beta}$) resulting of the Weibull distribution analysis. This study has tried to reduce the test time resulting from varying impulse pressure range and the flexing diameter. Accelerated life test model for the test results was adopted the GLL(generalized log linear) and the accelerated indexes are identified as 6.64 for the pressure and 4.46 for flexing radius. Also, it found that shape parameter is 6.19, scale parameter(${\eta}$) is $1.035{\times}108$, which were adopted the pressure 35 MPa and the flexing diameter R100 mm in the used condition.